Review Article | Published:

Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic

Nature Medicine volume 23, pages 917928 (2017) | Download Citation

Abstract

The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    World Health Organization. Fact Sheet: World Malaria Report 2016 (WHO, 2016); available at .

  2. 2.

    et al. Malaria. Lancet 383, 723–735 (2014).

  3. 3.

    et al. Artemisinin resistance--modelling the potential human and economic costs. Malar. J. 13, 452 (2014).

  4. 4.

    & The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 68, 259–278 (2014).

  5. 5.

    et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol. 8, 133–137 (2013).

  6. 6.

    , , , & Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 32, 682–696 (2016).

  7. 7.

    et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc. Natl. Acad. Sci. USA 110, 5157–5162 (2013).

  8. 8.

    et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 129, 406–416 (2016).

  9. 9.

    et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

  10. 10.

    et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

  11. 11.

    et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach. PLoS Med. 12, e1001823 (2015).

  12. 12.

    et al. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 108, 397–402 (2011).

  13. 13.

    et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13, 1043–1049 (2013).

  14. 14.

    et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

  15. 15.

    et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR–Cas9 system. Nat. Biotechnol. 32, 819–821 (2014).

  16. 16.

    et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

  17. 17.

    et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).

  18. 18.

    et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

  19. 19.

    et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211, 670–679 (2015).

  20. 20.

    MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife 5, e08714 (2016).

  21. 21.

    et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N. Engl. J. Med. 374, 2453–2464 (2016).

  22. 22.

    et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003–2013): the role of parasite genetic factors. Clin. Infect. Dis. 63, 784–791 (2016).

  23. 23.

    et al. Population parameters underlying an ongoing soft sweep in Southeast Asian malaria parasites. Mol. Biol. Evol. 34, 131–144 (2017).

  24. 24.

    et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect. Dis. 17, 491–497 (2017).

  25. 25.

    et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N. Engl. J. Med. 376, 991–993 (2017).

  26. 26.

    et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015).

  27. 27.

    et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 13, e1002132 (2015).

  28. 28.

    et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015).

  29. 29.

    , & Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends Parasitol. 28, 555–562 (2012).

  30. 30.

    et al. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio 8, e00172–17 (2017).

  31. 31.

    et al. Artemisinin-resistant Plasmodium falciparum clinical isolates can infect diverse mosquito vectors of Southeast Asia and Africa. Nat. Commun. 6, 8614 (2015).

  32. 32.

    et al. Intrahost selection of Plasmodium falciparum pfmdr1 alleles after antimalarial treatment on the northwestern border of Thailand. J. Infect. Dis. 195, 134–141 (2007).

  33. 33.

    et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194, 528–535 (2006).

  34. 34.

    et al. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene. Malar. J. 12, 431 (2013).

  35. 35.

    et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol. Microbiol. 97, 381–395 (2015).

  36. 36.

    , & Dihydroartemisinin-piperaquine failure in Cambodia. N. Engl. J. Med. 371, 484–485 (2014).

  37. 37.

    et al. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med. 13, 305 (2015).

  38. 38.

    et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16, 357–365 (2016).

  39. 39.

    et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17, 164–173 (2017).

  40. 40.

    et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect. Dis. 17, 174–183 (2017).

  41. 41.

    et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio 8, e00303–17 (2017).

  42. 42.

    , , & Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob. Agents Chemother. 55, 3908–3916 (2011).

  43. 43.

    & The origins and spread of antimalarial drug resistance: lessons for policy makers. Acta Trop. 94, 269–280 (2005).

  44. 44.

    The public health impact of chloroquine resistance in Africa. Am. J. Trop. Med. Hyg. 64 (Suppl. 1–2), 12–17 (2001).

  45. 45.

    & The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. 41, 34–48 (2017).

  46. 46.

    The origins of antimalarial-drug resistance. N. Engl. J. Med. 371, 397–399 (2014).

  47. 47.

    & Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 7, 864–874 (2009).

  48. 48.

    Djimdé, A.A. et al. Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 69, 558–563 (2003).

  49. 49.

    , & Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 9, e1003327 (2013).

  50. 50.

    et al. Reappraisal of known malaria resistance loci in a large multicenter study. Nat. Genet. 46, 1197–1204 (2014).

  51. 51.

    et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J. Antimicrob. Chemother. 69, 1005–1016 (2014).

  52. 52.

    et al. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat. Commun. 7, 13401 (2016).

  53. 53.

    , & Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J. (2017).

  54. 54.

    et al. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis. Sci. Rep. 7, 45963 (2017).

  55. 55.

    , & Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94, 9389–9393 (1997).

  56. 56.

    et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 9, e1003293 (2013).

  57. 57.

    et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 10, e1004812 (2014).

  58. 58.

    & Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS One 11, e0154166 (2016).

  59. 59.

    et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45, 648–655 (2013).

  60. 60.

    & Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev. 57, 117–145 (2005).

  61. 61.

    et al. Adaptive copy number evolution in malaria parasites. PLoS Genet. 4, e1000243 (2008).

  62. 62.

    et al. Origin of robustness in generating drug-resistant malaria parasites. Mol. Biol. Evol. 31, 1649–1660 (2014).

  63. 63.

    et al. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop. 164, 329–336 (2016).

  64. 64.

    et al. Cost effectiveness of intermittent screening followed by treatment versus intermittent preventive treatment during pregnancy in West Africa: analysis and modelling of results from a non-inferiority trial. Malar. J. 15, 493 (2016).

  65. 65.

    et al. Dihydroartemisinin-piperaquine for the prevention of malaria in pregnancy. N. Engl. J. Med. 374, 928–939 (2016).

  66. 66.

    et al. Seasonal malaria chemoprevention with sulphadoxine-pyrimethamine and amodiaquine selects pfdhfr-dhps quintuple mutant genotype in Mali. PLoS One 11, e0162718 (2016).

  67. 67.

    et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA 109, 16823–16828 (2012).

  68. 68.

    et al. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am. J. Trop. Med. Hyg. 54, 62–66 (1996).

  69. 69.

    , , , & The diminishing returns of atovaquone-proguanil for elimination of Plasmodium falciparum malaria: modelling mass drug administration and treatment. Malar. J. 13, 380 (2014).

  70. 70.

    et al. Atovaquone-proguanil remains a potential stopgap therapy for multidrug-resistant Plasmodium falciparum in areas along the Thai-Cambodian border. Antimicrob. Agents Chemother. 60, 1896–1898 (2016).

  71. 71.

    , & Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 5, 4029 (2014).

  72. 72.

    et al. Direct evidence for the atovaquone action on the Plasmodium cytochrome bc1 complex. Parasitol. Int. 64, 295–300 (2015).

  73. 73.

    , , & Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446, 88–91 (2007).

  74. 74.

    Naphthoquinones: atovaquone, and other antimalarials targeting mitochondrial functions. in Treatment and Prevention of Malaria (eds. Staines, H.M. & Krishna, S.) 127–139 (Springer, Basel, 2012).

  75. 75.

    , & Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune north American traveller to west Africa. Am. J. Trop. Med. Hyg. 72, 407–409 (2005).

  76. 76.

    et al. Efficacy of atovaquone-proguanil for treatment of acute multidrug-resistant Plasmodium falciparum malaria in Thailand. Am. J. Trop. Med. Hyg. 76, 655–658 (2007).

  77. 77.

    , & Parallel evolution of adaptive mutations in Plasmodium falciparum mitochondrial DNA during atovaquone-proguanil treatment. Mol. Biol. Evol. 24, 1582–1585 (2007).

  78. 78.

    et al. Mutations in the Plasmodium falciparum cytochrome b gene are associated with delayed parasite recrudescence in malaria patients treated with atovaquone-proguanil. Malar. J. 7, 240 (2008).

  79. 79.

    et al. Antimalarial pharmacology and therapeutics of atovaquone. J. Antimicrob. Chemother. 68, 977–985 (2013).

  80. 80.

    et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J. Biol. Chem. 287, 9731–9741 (2012).

  81. 81.

    et al. Molecular characterization of the cytochrome b gene and in vitro atovaquone susceptibility of Plasmodium falciparum isolates from Kenya. Antimicrob. Agents Chemother. 59, 1818–1821 (2015).

  82. 82.

    , , , & Emergence of resistance to atovaquone-proguanil in malaria parasites: insights from computational modeling and clinical case reports. Antimicrob. Agents Chemother. 58, 4504–4514 (2014).

  83. 83.

    , & Is the mitochondrion a good malaria drug target? Trends Parasitol. 33, 185–193 (2017).

  84. 84.

    , , , & Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol. Microbiol. 33, 704–711 (1999).

  85. 85.

    et al. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob. Agents Chemother. 44, 2100–2108 (2000).

  86. 86.

    , , & Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar. J. 2, 5 (2003).

  87. 87.

    et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science 352, 349–353 (2016).

  88. 88.

    et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA 108, 4400–4405 (2011).

  89. 89.

    , & Endoperoxide drug cross-resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed-clearance phenotype. Antimicrob. Agents Chemother. 60, 6952–6956 (2016).

  90. 90.

    et al. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob. Agents Chemother. 60, 4501–4510 (2016).

  91. 91.

    et al. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J. 16, 45 (2017).

  92. 92.

    et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect. Dis. 16, 61–69 (2016).

  93. 93.

    et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect. Dis. 15, 415–421 (2015).

  94. 94.

    et al. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar. J. 15, 583 (2016).

  95. 95.

    et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun. 8, 15159 (2017).

  96. 96.

    et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

  97. 97.

    , & Protein degradation systems as antimalarial therapeutic targets. Trends Parasitol. (in the press).

  98. 98.

    et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 1175–1180 (2010).

  99. 99.

    et al. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med. 371, 403–410 (2014).

  100. 100.

    et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci. USA 111, E5455–E5462 (2014).

  101. 101.

    et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nat. Commun. 5, 5521 (2014).

  102. 102.

    Ion regulation in the malaria parasite. Annu. Rev. Microbiol. 69, 341–359 (2015).

  103. 103.

    et al. Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13, 227–237 (2013).

  104. 104.

    et al. The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to Anopheles mosquito vector. Antimicrob. Agents Chemother. 56, 3544–3548 (2012).

  105. 105.

    et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med. 7, 296ra111 (2015).

  106. 106.

    et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect. Dis. 17, 626–635 (2017).

  107. 107.

    , & A framework for assessing the risk of resistance for anti-malarials in development. Malar. J. 11, 292 (2012).

  108. 108.

    & Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar. J. 13, 62 (2014).

  109. 109.

    et al. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance. Proc. Natl. Acad. Sci. USA 111, 799–804 (2014).

  110. 110.

    et al. Mutations in the P-type cation-transporter ATPase 4, PfATP4, mediate resistance to both aminopyrazole and spiroindolone antimalarials. ACS Chem. Biol. 10, 413–420 (2015).

  111. 111.

    et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334, 1372–1377 (2011).

  112. 112.

    et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother. 58, 5060–5067 (2014).

  113. 113.

    et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N. Engl. J. Med. 375, 1152–1160 (2016).

  114. 114.

    et al. Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) confer multidrug resistance. MBio 7, e00696–16 (2016).

  115. 115.

    et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat. Microbiol. 1, 16166 (2016).

  116. 116.

    et al. Plasmodium falciparum cyclic amine resistance locus (PfCARL), a resistance mechanism for two distinct compound classes. ACS Infect. Dis. 2, 816–826 (2016).

  117. 117.

    et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 9, eaad9735 (2017).

  118. 118.

    et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013).

  119. 119.

    , , , & Targeting protein translation in organelles of the Apicomplexa. Trends Parasitol. 32, 953–965 (2016).

  120. 120.

    et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat. Commun. 8, 14574 (2017).

  121. 121.

    et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2, 17031 (2017).

  122. 122.

    et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

  123. 123.

    et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538, 344–349 (2016).

  124. 124.

    Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob. Agents Chemother. 57, 5792–5807 (2013).

  125. 125.

    et al. Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under pressure. Malar. J. 5, 11 (2006).

  126. 126.

    & Ferroquine: welcome to the next generation of antimalarials. Lancet Infect. Dis. 15, 1365–1366 (2015).

  127. 127.

    et al. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis. 15, 1409–1419 (2015).

  128. 128.

    et al. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar. J. 15, 469 (2016).

  129. 129.

    How to tackle antimalarial resistance? EMBO Mol. Med. 9, 133–134 (2017).

  130. 130.

    et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob. Agents Chemother. 59, 437–443 (2015).

  131. 131.

    et al. A broad analysis of resistance development in the malaria parasite. Nat. Commun. 7, 11901 (2016).

  132. 132.

    et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. USA 108, E1214–E1223 (2011).

  133. 133.

    et al. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol. Microbiol. 104, 306–318 (2017).

  134. 134.

    et al. Discovery of dual function acridones as a new antimalarial chemotype. Nature 459, 270–273 (2009).

  135. 135.

    et al. Simplified reversed chloroquines to overcome malaria resistance to quinoline-based drugs. Antimicrob. Agents Chemother. 61, e01913–16 (2017).

  136. 136.

    et al. CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malar. J. 12, 396 (2013).

  137. 137.

    et al. Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood 125, 534–541 (2015).

  138. 138.

    , , , & Inhibition of an erythrocyte tyrosine kinase with imatinib prevents Plasmodium falciparum egress and terminates parasitemia. PLoS One 11, e0164895 (2016).

  139. 139.

    et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16, e47–e63 (2016).

  140. 140.

    et al. High-throughput assay and discovery of small molecules that interrupt malaria transmission. Cell Host Microbe 19, 114–126 (2016).

  141. 141.

    et al. A chemical susceptibility profile of the Plasmodium falciparum transmission stages by complementary cell-based gametocyte assays. J. Antimicrob. Chemother. 71, 1148–1158 (2016).

  142. 142.

    , & Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against Plasmodium falciparum gametocytes. Antimicrob. Agents Chemother. 60, 2097–2107 (2016).

  143. 143.

    Targeting the parasite to suppress malaria transmission. Adv. Parasitol. 97, 147–185 (2017).

  144. 144.

    , & Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission. Cochrane Database Syst. Rev. (2), CD008152 (2015).

  145. 145.

    , & Primaquine: the risks and the benefits. Malar. J. 13, 418 (2014).

  146. 146.

    et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).

  147. 147.

    , , & Active migration and passive transport of malaria parasites. Trends Parasitol. 31, 357–362 (2015).

  148. 148.

    et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 372, 1126–1137 (2015).

  149. 149.

    , & Immunity to malaria in an era of declining malaria transmission. Parasitology 143, 139–153 (2016).

  150. 150.

    Antimalarial drug resistance. J. Clin. Invest. 113, 1084–1092 (2004).

  151. 151.

    & Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410 (2011).

  152. 152.

    et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. 191, 619–626 (2005).

  153. 153.

    et al. Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evol. Appl. 2, 52–61 (2009).

  154. 154.

    , , & Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 38, 41–55 (2014).

  155. 155.

    World Health Organization. Guidelines for the treatment of malaria. Third edition (WHO, 2015); available at .

  156. 156.

    , & Studies on a new antimalarial compound: pyronaridine. Trans. R. Soc. Trop. Med. Hyg. 86, 7–10 (1992).

  157. 157.

    & Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 77 (Suppl. 6), 181–192 (2007).

  158. 158.

    et al. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob. Agents Chemother. 57, 818–826 (2013).

  159. 159.

    , , & PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 28, 504–514 (2012).

  160. 160.

    Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum. Acta Trop. 114, 166–170 (2010).

  161. 161.

    et al. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob. Agents Chemother. 54, 3121–3125 (2010).

  162. 162.

    et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361, 1174–1181 (2003).

  163. 163.

    et al. Transmission and cross-mating of high-level resistance Plasmodium falciparum dihydrofolate reductase haplotypes in The Gambia. Am. J. Trop. Med. Hyg. 82, 535–541 (2010).

  164. 164.

    et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar. J. 10, 378 (2011).

  165. 165.

    , & Functional comparison of 45 naturally occurring isoforms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT). Biochemistry 54, 5083–5094 (2015).

  166. 166.

    et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Sci. Rep. 5, 14552 (2015).

  167. 167.

    et al. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc. Natl. Acad. Sci. USA 112, 11672–11677 (2015).

  168. 168.

    et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc. Natl. Acad. Sci. USA 106, 18883–18889 (2009).

  169. 169.

    , , , & Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in Plasmodium falciparum. Mol. Biol. Evol. 33, 1554–1570 (2016).

  170. 170.

    et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 199, 750–757 (2009).

  171. 171.

    et al. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J. Infect. Dis. 210, 344–353 (2014).

  172. 172.

    et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 91, 833–843 (2014).

  173. 173.

    , , & A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites. J. Cell Sci. 121, 1624–1632 (2008).

  174. 174.

    , & Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett. 585, 1551–1562 (2011).

  175. 175.

    , , , & Photoaffinity labeling of the Plasmodium falciparum chloroquine resistance transporter with a novel perfluorophenylazido chloroquine. Biochemistry 47, 10394–10406 (2008).

  176. 176.

    et al. Molecular mechanisms for drug hypersensitivity induced by the malaria parasite's chloroquine resistance transporter. PLoS Pathog. 12, e1005725 (2016).

  177. 177.

    & Antimalarial drug resistance in Africa: key lessons for the future. Ann. NY Acad. Sci. 1342, 62–67 (2015).

  178. 178.

    et al. Metabolic QTL analysis links chloroquine resistance in Plasmodium falciparum to impaired hemoglobin catabolism. PLoS Genet. 10, e1004085 (2014).

  179. 179.

    et al. Evolution of fitness cost-neutral mutant PfCRT conferring P. falciparum 4-aminoquinoline drug resistance is accompanied by altered parasite metabolism and digestive vacuole physiology. PLoS Pathog. 12, e1005976 (2016).

  180. 180.

    et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun. 7, 11553 (2016).

  181. 181.

    et al. Population structure shapes copy number variation in malaria parasites. Mol. Biol. Evol. 33, 603–620 (2016).

  182. 182.

    The interplay between drug resistance and fitness in malaria parasites. Mol. Microbiol. 89, 1025–1038 (2013).

  183. 183.

    et al. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum. PLoS Genet. 10, e1004382 (2014).

  184. 184.

    et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

Download references

Acknowledgements

D.A.F. was supported by US National Institutes of Health (NIH) R01 grants AI50234, AI109023 and AI124678.

Author information

Affiliations

  1. Medicines for Malaria Venture, Geneva, Switzerland.

    • Benjamin Blasco
    •  & Didier Leroy
  2. Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.

    • David A Fidock
  3. Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA.

    • David A Fidock

Authors

  1. Search for Benjamin Blasco in:

  2. Search for Didier Leroy in:

  3. Search for David A Fidock in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David A Fidock.

Supplementary information

Excel files

  1. 1.

    Supplementary Table 1

    Antimalarial drugs and associated clinical and molecular markers of resistance in Plasmodium falciparum asexual blood stage parasites.

  2. 2.

    Supplementary Table 2

    In vitro resistance to experimental antimalarials in Plasmodium falciparum asexual blood stage parasites.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nm.4381

Further reading