Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic

Abstract

The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmodium's life cycle and its relationship to drug resistance.
Figure 2: Molecular targets of and mechanisms of resistance to major antimalarial drugs.
Figure 3: History of the introduction of the principal antimalarials and of the first emergence of resistance in the field.
Figure 4: Emergence and spread of P. falciparum resistance to CQ, pyrimethamine and ART derivatives.

Similar content being viewed by others

References

  1. World Health Organization. Fact Sheet: World Malaria Report 2016 (WHO, 2016); available at http://www.who.int/malaria/media/world-malaria-report-2016/en/.

  2. White, N.J. et al. Malaria. Lancet 383, 723–735 (2014).

    Article  PubMed  Google Scholar 

  3. Lubell, Y. et al. Artemisinin resistance--modelling the potential human and economic costs. Malar. J. 13, 452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sigala, P.A. & Goldberg, D.E. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 68, 259–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Combrinck, J.M. et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol. 8, 133–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Tilley, L., Straimer, J., Gnädig, N.F., Ralph, S.A. & Fidock, D.A. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 32, 682–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klonis, N. et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc. Natl. Acad. Sci. USA 110, 5157–5162 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xie, S.C. et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 129, 406–416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dondorp, A.M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. White, L.J. et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach. PLoS Med. 12, e1001823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saralamba, S. et al. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 108, 397–402 (2011).

    Article  PubMed  Google Scholar 

  13. Witkowski, B. et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13, 1043–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR–Cas9 system. Nat. Biotechnol. 32, 819–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Straimer, J. et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ashley, E.A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takala-Harrison, S. et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211, 670–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Malaria, G.E.N.P.C.P. MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife 5, e08714 (2016).

    Article  Google Scholar 

  21. Ménard, D. et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N. Engl. J. Med. 374, 2453–2464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phyo, A.P. et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003–2013): the role of parasite genetic factors. Clin. Infect. Dis. 63, 784–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anderson, T.J. et al. Population parameters underlying an ongoing soft sweep in Southeast Asian malaria parasites. Mol. Biol. Evol. 34, 131–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Imwong, M. et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect. Dis. 17, 491–497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu, F. et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N. Engl. J. Med. 376, 991–993 (2017).

    Article  PubMed  Google Scholar 

  26. Mok, S. et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Dogovski, C. et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 13, e1002132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mbengue, A. et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhattacharjee, S., Stahelin, R.V. & Haldar, K. Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends Parasitol. 28, 555–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Straimer, J. et al. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio 8, e00172–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. St Laurent, B. et al. Artemisinin-resistant Plasmodium falciparum clinical isolates can infect diverse mosquito vectors of Southeast Asia and Africa. Nat. Commun. 6, 8614 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Uhlemann, A.C. et al. Intrahost selection of Plasmodium falciparum pfmdr1 alleles after antimalarial treatment on the northwestern border of Thailand. J. Infect. Dis. 195, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sidhu, A.B.S. et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194, 528–535 (2006).

    Article  PubMed  Google Scholar 

  34. Pascual, A. et al. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene. Malar. J. 12, 431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen, I. et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol. Microbiol. 97, 381–395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saunders, D.L., Vanachayangkul, P. & Lon, C. Dihydroartemisinin-piperaquine failure in Cambodia. N. Engl. J. Med. 371, 484–485 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Duru, V. et al. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med. 13, 305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amaratunga, C. et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16, 357–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amato, R. et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17, 164–173 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Witkowski, B. et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect. Dis. 17, 174–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhingra, S.K. et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio 8, e00303–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eastman, R.T., Dharia, N.V., Winzeler, E.A. & Fidock, D.A. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob. Agents Chemother. 55, 3908–3916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, T.J. & Roper, C. The origins and spread of antimalarial drug resistance: lessons for policy makers. Acta Trop. 94, 269–280 (2005).

    Article  PubMed  Google Scholar 

  44. Trape, J.F. The public health impact of chloroquine resistance in Africa. Am. J. Trop. Med. Hyg. 64 (Suppl. 1–2), 12–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Woodrow, C.J. & White, N.J. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. 41, 34–48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Packard, R.M. The origins of antimalarial-drug resistance. N. Engl. J. Med. 371, 397–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Eastman, R.T. & Fidock, D.A. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 7, 864–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Djimdé, A.A. et al. Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 69, 558–563 (2003).

    Article  PubMed  Google Scholar 

  49. Taylor, S.M., Cerami, C. & Fairhurst, R.M. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 9, e1003327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rockett, K.A. et al. Reappraisal of known malaria resistance loci in a large multicenter study. Nat. Genet. 46, 1197–1204 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  51. Antoine, T. et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J. Antimicrob. Chemother. 69, 1005–1016 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Cyrklaff, M. et al. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat. Commun. 7, 13401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kavishe, R.A., Koenderink, J.B. & Alifrangis, M. Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J. http://dx.doi.org/10.1111/febs.14097 (2017).

  54. Mbanefo, E.C. et al. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis. Sci. Rep. 7, 45963 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rathod, P.K., McErlean, T. & Lee, P.C. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94, 9389–9393 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bopp, S.E. et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 9, e1003293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 10, e1004812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee, A.H. & Fidock, D.A. Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS One 11, e0154166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Miotto, O. et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45, 648–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Gregson, A. & Plowe, C.V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev. 57, 117–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Nair, S. et al. Adaptive copy number evolution in malaria parasites. PLoS Genet. 4, e1000243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kümpornsin, K. et al. Origin of robustness in generating drug-resistant malaria parasites. Mol. Biol. Evol. 31, 1649–1660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kateera, F. et al. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop. 164, 329–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Fernandes, S. et al. Cost effectiveness of intermittent screening followed by treatment versus intermittent preventive treatment during pregnancy in West Africa: analysis and modelling of results from a non-inferiority trial. Malar. J. 15, 493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kakuru, A. et al. Dihydroartemisinin-piperaquine for the prevention of malaria in pregnancy. N. Engl. J. Med. 374, 928–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maiga, H. et al. Seasonal malaria chemoprevention with sulphadoxine-pyrimethamine and amodiaquine selects pfdhfr-dhps quintuple mutant genotype in Mali. PLoS One 11, e0162718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yuthavong, Y. et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA 109, 16823–16828 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Looareesuwan, S. et al. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am. J. Trop. Med. Hyg. 54, 62–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Maude, R.J., Nguon, C., Dondorp, A.M., White, L.J. & White, N.J. The diminishing returns of atovaquone-proguanil for elimination of Plasmodium falciparum malaria: modelling mass drug administration and treatment. Malar. J. 13, 380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saunders, D.L. et al. Atovaquone-proguanil remains a potential stopgap therapy for multidrug-resistant Plasmodium falciparum in areas along the Thai-Cambodian border. Antimicrob. Agents Chemother. 60, 1896–1898 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  71. Birth, D., Kao, W.C. & Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 5, 4029 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Siregar, J.E. et al. Direct evidence for the atovaquone action on the Plasmodium cytochrome bc1 complex. Parasitol. Int. 64, 295–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Painter, H.J., Morrisey, J.M., Mather, M.W. & Vaidya, A.B. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446, 88–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Vaidya, A.B. Naphthoquinones: atovaquone, and other antimalarials targeting mitochondrial functions. in Treatment and Prevention of Malaria (eds. Staines, H.M. & Krishna, S.) 127–139 (Springer, Basel, 2012).

    Google Scholar 

  75. Kuhn, S., Gill, M.J. & Kain, K.C. Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune north American traveller to west Africa. Am. J. Trop. Med. Hyg. 72, 407–409 (2005).

    Article  PubMed  Google Scholar 

  76. Krudsood, S. et al. Efficacy of atovaquone-proguanil for treatment of acute multidrug-resistant Plasmodium falciparum malaria in Thailand. Am. J. Trop. Med. Hyg. 76, 655–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Musset, L., Le Bras, J. & Clain, J. Parallel evolution of adaptive mutations in Plasmodium falciparum mitochondrial DNA during atovaquone-proguanil treatment. Mol. Biol. Evol. 24, 1582–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Sutherland, C.J. et al. Mutations in the Plasmodium falciparum cytochrome b gene are associated with delayed parasite recrudescence in malaria patients treated with atovaquone-proguanil. Malar. J. 7, 240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nixon, G.L. et al. Antimalarial pharmacology and therapeutics of atovaquone. J. Antimicrob. Chemother. 68, 977–985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fisher, N. et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J. Biol. Chem. 287, 9731–9741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ingasia, L.A. et al. Molecular characterization of the cytochrome b gene and in vitro atovaquone susceptibility of Plasmodium falciparum isolates from Kenya. Antimicrob. Agents Chemother. 59, 1818–1821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cottrell, G., Musset, L., Hubert, V., Le Bras, J. & Clain, J. Emergence of resistance to atovaquone-proguanil in malaria parasites: insights from computational modeling and clinical case reports. Antimicrob. Agents Chemother. 58, 4504–4514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goodman, C.D., Buchanan, H.D. & McFadden, G.I. Is the mitochondrion a good malaria drug target? Trends Parasitol. 33, 185–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Srivastava, I.K., Morrisey, J.M., Darrouzet, E., Daldal, F. & Vaidya, A.B. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol. Microbiol. 33, 704–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Korsinczky, M. et al. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob. Agents Chemother. 44, 2100–2108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwöbel, B., Alifrangis, M., Salanti, A. & Jelinek, T. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar. J. 2, 5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Goodman, C.D. et al. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science 352, 349–353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Charman, S.A. et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA 108, 4400–4405 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Siriwardana, A., Iyengar, K. & Roepe, P.D. Endoperoxide drug cross-resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed-clearance phenotype. Antimicrob. Agents Chemother. 60, 6952–6956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, T. et al. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob. Agents Chemother. 60, 4501–4510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baumgärtner, F. et al. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J. 16, 45 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Phyo, A.P. et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect. Dis. 16, 61–69 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tun, K.M. et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect. Dis. 15, 415–421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mishra, N. et al. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar. J. 15, 583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. O'Neill, P.M. et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun. 8, 15159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ng, C.L., Fidock, D.A. & Bogyo, M. Protein degradation systems as antimalarial therapeutic targets. Trends Parasitol. (in the press).

  98. Rottmann, M. et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 1175–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. White, N.J. et al. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med. 371, 403–410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiménez-Díaz, M.B. et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci. USA 111, E5455–E5462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vaidya, A.B. et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nat. Commun. 5, 5521 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Kirk, K. Ion regulation in the malaria parasite. Annu. Rev. Microbiol. 69, 341–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Spillman, N.J. et al. Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13, 227–237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van Pelt-Koops, J.C. et al. The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to Anopheles mosquito vector. Antimicrob. Agents Chemother. 56, 3544–3548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Phillips, M.A. et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med. 7, 296ra111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McCarthy, J.S. et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect. Dis. 17, 626–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ding, X.C., Ubben, D. & Wells, T.N. A framework for assessing the risk of resistance for anti-malarials in development. Malar. J. 11, 292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hastings, I.M. & Hodel, E.M. Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar. J. 13, 62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lukens, A.K. et al. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance. Proc. Natl. Acad. Sci. USA 111, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Flannery, E.L. et al. Mutations in the P-type cation-transporter ATPase 4, PfATP4, mediate resistance to both aminopyrazole and spiroindolone antimalarials. ACS Chem. Biol. 10, 413–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Meister, S. et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334, 1372–1377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kuhen, K.L. et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother. 58, 5060–5067 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. White, N.J. et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N. Engl. J. Med. 375, 1152–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. LaMonte, G. et al. Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) confer multidrug resistance. MBio 7, e00696–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim, M.Y. et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat. Microbiol. 1, 16166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Magistrado, P.A. et al. Plasmodium falciparum cyclic amine resistance locus (PfCARL), a resistance mechanism for two distinct compound classes. ACS Infect. Dis. 2, 816–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paquet, T. et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 9, eaad9735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. McNamara, C.W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goodman, C.D., Pasaje, C.F., Kennedy, K., McFadden, G.I. & Ralph, S.A. Targeting protein translation in organelles of the Apicomplexa. Trends Parasitol. 32, 953–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Sonoiki, E. et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat. Commun. 8, 14574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wong, W. et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2, 17031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Baragaña, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kato, N. et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538, 344–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. White, N.J. Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob. Agents Chemother. 57, 5792–5807 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Daher, W. et al. Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under pressure. Malar. J. 5, 11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wells, T.N. & Hooft van Huijsduijnen, R. Ferroquine: welcome to the next generation of antimalarials. Lancet Infect. Dis. 15, 1365–1366 (2015).

    Article  PubMed  Google Scholar 

  127. Held, J. et al. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis. 15, 1409–1419 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. McCarthy, J.S. et al. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar. J. 15, 469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leroy, D. How to tackle antimalarial resistance? EMBO Mol. Med. 9, 133–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Plucinski, M.M. et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob. Agents Chemother. 59, 437–443 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Corey, V.C. et al. A broad analysis of resistance development in the malaria parasite. Nat. Commun. 7, 11901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Adjalley, S.H. et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. USA 108, E1214–E1223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Siciliano, G. et al. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol. Microbiol. 104, 306–318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kelly, J.X. et al. Discovery of dual function acridones as a new antimalarial chemotype. Nature 459, 270–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gunsaru, B. et al. Simplified reversed chloroquines to overcome malaria resistance to quinoline-based drugs. Antimicrob. Agents Chemother. 61, e01913–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vial, H. et al. CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malar. J. 12, 396 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Smith, C.M. et al. Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood 125, 534–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kesely, K.R., Pantaleo, A., Turrini, F.M., Olupot-Olupot, P. & Low, P.S. Inhibition of an erythrocyte tyrosine kinase with imatinib prevents Plasmodium falciparum egress and terminates parasitemia. PLoS One 11, e0164895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zumla, A. et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16, e47–e63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Plouffe, D.M. et al. High-throughput assay and discovery of small molecules that interrupt malaria transmission. Cell Host Microbe 19, 114–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D'Alessandro, S. et al. A chemical susceptibility profile of the Plasmodium falciparum transmission stages by complementary cell-based gametocyte assays. J. Antimicrob. Chemother. 71, 1148–1158 (2016).

    Article  PubMed  Google Scholar 

  142. Lucantoni, L., Fidock, D.A. & Avery, V.M. Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against Plasmodium falciparum gametocytes. Antimicrob. Agents Chemother. 60, 2097–2107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sinden, R.E. Targeting the parasite to suppress malaria transmission. Adv. Parasitol. 97, 147–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Graves, P.M., Gelband, H. & Garner, P. Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission. Cochrane Database Syst. Rev. (2), CD008152 (2015).

  145. Ashley, E.A., Recht, J. & White, N.J. Primaquine: the risks and the benefits. Malar. J. 13, 418 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sundararaman, S.A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Douglas, R.G., Amino, R., Sinnis, P. & Frischknecht, F. Active migration and passive transport of malaria parasites. Trends Parasitol. 31, 357–362 (2015).

    Article  PubMed  Google Scholar 

  148. Seydel, K.B. et al. Brain swelling and death in children with cerebral malaria. N. Engl. J. Med. 372, 1126–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fowkes, F.J., Boeuf, P. & Beeson, J.G. Immunity to malaria in an era of declining malaria transmission. Parasitology 143, 139–153 (2016).

    Article  PubMed  Google Scholar 

  150. White, N.J. Antimalarial drug resistance. J. Clin. Invest. 113, 1084–1092 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bousema, T. & Drakeley, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bejon, P. et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. 191, 619–626 (2005).

    Article  PubMed  Google Scholar 

  153. Pongtavornpinyo, W. et al. Probability of emergence of antimalarial resistance in different stages of the parasite life cycle. Evol. Appl. 2, 52–61 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Vanaerschot, M., Huijben, S., Van den Broeck, F. & Dujardin, J.C. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 38, 41–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. World Health Organization. Guidelines for the treatment of malaria. Third edition (WHO, 2015); available at http://www.who.int/malaria/publications/atoz/9789241549127/en/.

  156. Chang, C., Lin-Hua, T. & Jantanavivat, C. Studies on a new antimalarial compound: pyronaridine. Trans. R. Soc. Trop. Med. Hyg. 86, 7–10 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Nosten, F. & White, N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 77 (Suppl. 6), 181–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Leang, R. et al. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob. Agents Chemother. 57, 818–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ecker, A., Lehane, A.M., Clain, J. & Fidock, D.A. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 28, 504–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mita, T. Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum. Acta Trop. 114, 166–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Corredor, V. et al. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob. Agents Chemother. 54, 3121–3125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roper, C. et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361, 1174–1181 (2003).

    Article  PubMed  Google Scholar 

  163. Kheir, A. et al. Transmission and cross-mating of high-level resistance Plasmodium falciparum dihydrofolate reductase haplotypes in The Gambia. Am. J. Trop. Med. Hyg. 82, 535–541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gething, P.W. et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar. J. 10, 378 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Callaghan, P.S., Hassett, M.R. & Roepe, P.D. Functional comparison of 45 naturally occurring isoforms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT). Biochemistry 54, 5083–5094 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Pulcini, S. et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Sci. Rep. 5, 14552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pelleau, S. et al. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc. Natl. Acad. Sci. USA 112, 11672–11677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sá, J.M. et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc. Natl. Acad. Sci. USA 106, 18883–18889 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gabryszewski, S.J., Modchang, C., Musset, L., Chookajorn, T. & Fidock, D.A. Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in Plasmodium falciparum. Mol. Biol. Evol. 33, 1554–1570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sisowath, C. et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 199, 750–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Conrad, M.D. et al. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J. Infect. Dis. 210, 344–353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Venkatesan, M. et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 91, 833–843 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lehane, A.M., Hayward, R., Saliba, K.J. & Kirk, K. A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites. J. Cell Sci. 121, 1624–1632 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Petersen, I., Eastman, R. & Lanzer, M. Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett. 585, 1551–1562 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Lekostaj, J.K., Natarajan, J.K., Paguio, M.F., Wolf, C. & Roepe, P.D. Photoaffinity labeling of the Plasmodium falciparum chloroquine resistance transporter with a novel perfluorophenylazido chloroquine. Biochemistry 47, 10394–10406 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Richards, S.N. et al. Molecular mechanisms for drug hypersensitivity induced by the malaria parasite's chloroquine resistance transporter. PLoS Pathog. 12, e1005725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Takala-Harrison, S. & Laufer, M.K. Antimalarial drug resistance in Africa: key lessons for the future. Ann. NY Acad. Sci. 1342, 62–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Lewis, I.A. et al. Metabolic QTL analysis links chloroquine resistance in Plasmodium falciparum to impaired hemoglobin catabolism. PLoS Genet. 10, e1004085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gabryszewski, S.J. et al. Evolution of fitness cost-neutral mutant PfCRT conferring P. falciparum 4-aminoquinoline drug resistance is accompanied by altered parasite metabolism and digestive vacuole physiology. PLoS Pathog. 12, e1005976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Veiga, M.I. et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun. 7, 11553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cheeseman, I.H. et al. Population structure shapes copy number variation in malaria parasites. Mol. Biol. Evol. 33, 603–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Rosenthal, P.J. The interplay between drug resistance and fitness in malaria parasites. Mol. Microbiol. 89, 1025–1038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sanchez, C.P. et al. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum. PLoS Genet. 10, e1004382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ferdig, M.T. et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.A.F. was supported by US National Institutes of Health (NIH) R01 grants AI50234, AI109023 and AI124678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Fidock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Antimalarial drugs and associated clinical and molecular markers of resistance in Plasmodium falciparum asexual blood stage parasites. (XLSX 22 kb)

Supplementary Table 2

In vitro resistance to experimental antimalarials in Plasmodium falciparum asexual blood stage parasites. (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasco, B., Leroy, D. & Fidock, D. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23, 917–928 (2017). https://doi.org/10.1038/nm.4381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing