Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells

Abstract

Inflammatory diseases such as arthritis are chronic conditions that fail to resolve spontaneously. While the cytokine and cellular pathways triggering arthritis are well defined, those responsible for the resolution of inflammation are incompletely characterized. Here we identified interleukin (IL)-9-producing type 2 innate lymphoid cells (ILC2s) as the mediators of a molecular and cellular pathway that orchestrates the resolution of chronic inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation and activation of regulatory T (Treg) cells, and resulted in chronic arthritis with excessive cartilage destruction and bone loss. In contrast, treatment with IL-9 promoted ILC2-dependent Treg activation and effectively induced resolution of inflammation and protection of bone. Patients with rheumatoid arthritis in remission exhibited high numbers of IL-9+ ILC2s in joints and the circulation. Hence, fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic arthritis in Il9-deficient mice.
Figure 2: IL-9 accelerates the resolution of arthritis.
Figure 3: Altered TH17 and Treg responses in arthritic Il9−/− mice.
Figure 4: ILC2s sustain the suppressive capacity of Treg cells by co-stimulation via ICOSL–ICOS and GITRL–GITR.
Figure 5: IL-9 during resolution of human arthritis.

References

  1. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    Article  CAS  Google Scholar 

  2. Buckley, C.D., Gilroy, D.W., Serhan, C.N., Stockinger, B. & Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    Article  CAS  Google Scholar 

  3. McInnes, I.B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  Google Scholar 

  4. Kotas, M.E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).

    Article  CAS  Google Scholar 

  6. Steinman, L., Merrill, J.T., McInnes, I.B. & Peakman, M. Optimization of current and future therapy for autoimmune diseases. Nat. Med. 18, 59–65 (2012).

    Article  CAS  Google Scholar 

  7. Schett, G., Elewaut, D., McInnes, I.B., Dayer, J.M. & Neurath, M.F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  CAS  Google Scholar 

  8. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  9. Kehoe, O., Cartwright, A., Askari, A., El Haj, A.J. & Middleton, J. Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J. Transl. Med. 12, 157 (2014).

    Article  Google Scholar 

  10. Brackertz, D., Mitchell, G.F. & Mackay, I.R. Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum. 20, 841–850 (1977).

    Article  CAS  Google Scholar 

  11. Monach, P.A., Mathis, D. & Benoist, C. The K/BxN arthritis model. Curr. Protoc. Immunol. Chapter 15, Unit 15.22 (2008).

  12. Kollias, G. et al. Animal models for arthritis: innovative tools for prevention and treatment. Ann. Rheum. Dis. 70, 1357–1362 (2011).

    Article  Google Scholar 

  13. Ji, H.B. et al. Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor–related protein abrogates regulatory T cell suppression. J. Immunol. 172, 5823–5827 (2004).

    Article  CAS  Google Scholar 

  14. Stephens, G.L. et al. Engagement of glucocorticoid-induced TNFR family–related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol. 173, 5008–5020 (2004).

    Article  CAS  Google Scholar 

  15. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 12885–12890 (2009).

    Article  CAS  Google Scholar 

  16. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell–mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    Article  CAS  Google Scholar 

  17. Kaplan, M.H., Hufford, M.M. & Olson, M.R. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15, 295–307 (2015).

    Article  CAS  Google Scholar 

  18. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  Google Scholar 

  19. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9–producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  Google Scholar 

  20. Ramming, A., Druzd, D., Leipe, J., Schulze-Koops, H. & Skapenko, A. Maturation-related histone modifications in the PU.1 promoter regulate Th9-cell development. Blood 119, 4665–4674 (2012).

    Article  CAS  Google Scholar 

  21. Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  Google Scholar 

  22. Bannenberg, G.L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article  CAS  Google Scholar 

  23. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    Article  CAS  Google Scholar 

  24. Turner, J.E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

    Article  CAS  Google Scholar 

  25. Ciccia, F. et al. Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology 54, 2264–2272 (2015).

    Article  CAS  Google Scholar 

  26. Kundu-Raychaudhuri, S., Abria, C. & Raychaudhuri, S.P. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine 79, 45–51 (2016).

    Article  CAS  Google Scholar 

  27. Chang, H.C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2010).

    Article  CAS  Google Scholar 

  28. Nowak, E.C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    Article  CAS  Google Scholar 

  29. Townsend, J.M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    Article  CAS  Google Scholar 

  30. Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).

    Article  Google Scholar 

  31. Prevoo, M.L. et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38, 44–48 (1995).

    Article  CAS  Google Scholar 

  32. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  Google Scholar 

  33. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

  34. Zhang, G., Budker, V. & Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10, 1735–1737 (1999).

    Article  CAS  Google Scholar 

  35. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  Google Scholar 

  36. Lin, N.Y. et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Ann. Rheum. Dis. 72, 761–768 (2013).

    Article  CAS  Google Scholar 

  37. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  38. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  39. Thevenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  CAS  Google Scholar 

  40. Thévenaz, P. & Unser, M. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc. Res. Tech. 70, 135–146 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Pascual, K. Dreissigacker, R. Kleinlein, M. Comazzi, D. Weidner and B. Happich for excellent technical assistance. We thank U. Appelt and M. Mroz of the Core Unit Cell Sorting and Immunomonitoring Erlangen for cell sorting. This work was supported by the Deutsche Forschungsgemeinschaft (RA 2506/3-1 and RA 2506/4-1 to A.R.; DI 1537/5-1, DI 1537/7-1, DI 1537/8-1, DI 1537/9-1, AK 144/2-1 and DI 1537/11-1 to J.H.W.D.; SCHE 1583/7-1 to G.S.; SPP1468-IMMUNOBONE and CRC1181 to G.S. and J.H.W.D.), the Bundesministerium für Bildung und Forschung (METHARTHROS to G.S. and J.H.W.D.), the Marie Curie project OSTEOIMMUNE (to G.S. and J.H.W.D.), the TEAM project of the European Union and the IMI-funded project RTCure (to G.S.), Else Kröner-Fresenius-Stiftung 2014_A184 (to A.R.), the Wilhelm Sander Foundation (2013.056.1 to J.H.W.D.), the Interdisciplinary Centre for Clinical Research, Erlangen (A64 to J.H.W.D.; J40 to A.R.), the ELAN Fonds of the Universitätsklinikum Erlangen (16-10-05-1 to A.R.), the Career Support Award of Medicine of the Ernst Jung Foundation (to J.H.W.D.), SNF Sinergia CRSII3_154490 (to O.D.), the UK MRC (UI015178805; to A.N.J.M.), the Wellcome Trust (100963/Z/13/Z to A.N.J.M.) and US NIH grant AI057459 (to M.H.K.).

Author information

Authors and Affiliations

Authors

Contributions

Design of the study: S.R., G.S., J.H.W.D., A.R. Acquisition of data: S.R., M.L., S. Weber, L.M., A.S., T.W., N.-Y.L., K.D., M.G., A.R. Interpretation of data: S.R., A.B., M.H., A.N.J.M., B.W., M.M.Z., U.F., D.J.V., J.D.C., O.D., F.R., C.P., S. Wirtz, M.F.N., G.S., J.H.W.D., A.R. Support of material: A.B., M.H., M.H.K., B.W., U.F., D.J.V., J.D.C., O.D., F.R., C.P., M.F.N., A.N.J.M., S. Wirtz. Manuscript preparation: S.R., G.S., J.H.W.D., A.R.

Corresponding author

Correspondence to Andreas Ramming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–4 (PDF 2963 kb)

Life Sciences Reporting Summary (PDF 414 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauber, S., Luber, M., Weber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med 23, 938–944 (2017). https://doi.org/10.1038/nm.4373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4373

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research