Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease

Abstract

Soluble urokinase plasminogen activator receptor (suPAR) independently predicts chronic kidney disease (CKD) incidence and progression. Apolipoprotein L1 (APOL1) gene variants G1 and G2, but not the reference allele (G0), are associated with an increased risk of CKD in individuals of recent African ancestry. Here we show in two large, unrelated cohorts that decline in kidney function associated with APOL1 risk variants was dependent on plasma suPAR levels: APOL1-related risk was attenuated in patients with lower suPAR, and strengthened in those with higher suPAR levels. Mechanistically, surface plasmon resonance studies identified high-affinity interactions between suPAR, APOL1 and αvβ3 integrin, whereby APOL1 protein variants G1 and G2 exhibited higher affinity for suPAR-activated avb3 integrin than APOL1 G0. APOL1 G1 or G2 augments αvβ3 integrin activation and causes proteinuria in mice in a suPAR-dependent manner. The synergy of circulating factor suPAR and APOL1 G1 or G2 on αvβ3 integrin activation is a mechanism for CKD.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synergy of an APOL1 high-risk genotype and suPAR levels determines yearly loss of kidney function.
Figure 2: APOL1 forms high-affinity interactions with suPAR and αvβ3 integrin.
Figure 3: High levels of suPAR are needed to synergize with APOL1 G1 and G2 to induce αvβ3 integrin activation on human podocytes.
Figure 4: In vivo gene delivery of APOL1 G1 and G2, but not of G0, gene constructs caused proteinuria and podocyte foot-process effacement in wild-type mice, but not in Plaur−/− mice.

References

  1. Chen, T.K., Estrella, M.M. & Parekh, R.S. The evolving science of apolipoprotein-L1 and kidney disease. Curr. Opin. Nephrol. Hypertens. 25, 217–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kao, W.H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nichols, B. et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 87, 332–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Papeta, N. et al. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J. Am. Soc. Nephrol. 22, 1991–1996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopp, J.B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruggeman, L.A. et al. APOL1-G0 or APOL1-G2 transgenic models develop preeclampsia but not kidney disease. J. Am. Soc. Nephrol. 27, 3600–3610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, B.R. et al. In vivo modeling implicates APOL1 in nephropathy: evidence for dominant negative effects and epistasis under anemic stress. PLoS Genet. 11, e1005349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thunø, M., Macho, B. & Eugen-Olsen, J. suPAR: the molecular crystal ball. Dis. Markers 27, 157–172 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sidenius, N. et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood 96, 4091–4095 (2000).

    CAS  PubMed  Google Scholar 

  13. Ostrowski, S.R. et al. High plasma levels of intact and cleaved soluble urokinase receptor reflect immune activation and are independent predictors of mortality in HIV-1-infected patients. J. Acquir. Immune Defic. Syndr. 39, 23–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hayek, S.S. et al. Soluble urokinase receptor and chronic kidney disease. N. Engl. J. Med. 373, 1916–1925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hahm, E. et al. Bone marrow–derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat. Med. 23, 100–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weckerle, A. et al. Characterization of circulating APOL1 protein complexes in African Americans. J. Lipid Res. 57, 120–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ni, H., Li, A., Simonsen, N. & Wilkins, J.A. Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. J. Biol. Chem. 273, 7981–7987 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bruggeman, L.A. et al. Plasma apolipoprotein L1 levels do not correlate with CKD. J. Am. Soc. Nephrol. 25, 634–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lan, X. et al. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am. J. Physiol. Renal Physiol. 307, F326–F336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol. 445, 77–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest. 117, 2095–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yaddanapudi, S. et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J. Clin. Invest. 121, 3965–3980 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shukha, K. et al. Most ApoL1 is secreted by the liver. J. Am. Soc. Nephrol. 28, 1079–1083 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu, Y. et al. APOL1–G1 in nephrocytes induces hypertrophy and accelerates cell death. J. Am. Soc. Nephrol. 28, 1106–1116 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, L. et al. APOL1 renal-risk variants induce mitochondrial dysfunction. J. Am. Soc. Nephrol. 28, 1093–1105 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Friedman, D.J. & Pollak, M.R. Apolipoprotein L1 and kidney disease in African Americans. Trends Endocrinol. Metab. 27, 204–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruzel-Davila, E. et al. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J. Am. Soc. Nephrol. 28, 1117–1130 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Cortese, K., Sahores, M., Madsen, C.D., Tacchetti, C. & Blasi, F. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS One 3, e3730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Czekay, R.P., Kuemmel, T.A., Orlando, R.A. & Farquhar, M.G. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol. Biol. Cell 12, 1467–1479 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, C.H. et al. Integrin-β3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat. Commun. 6, 8672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi, N. et al. Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated β1-integrin endocytosis. Am. J. Physiol. Renal Physiol. 308, F614–F626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Outinen, T.K. et al. Urine soluble urokinase-type plasminogen activator receptor levels correlate with proteinuria in Puumala hantavirus infection. J. Intern. Med. 276, 387–395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gavrilovskaya, I.N., Shepley, M., Shaw, R., Ginsberg, M.H. & Mackow, E.R. β3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc. Natl. Acad. Sci. USA 95, 7074–7079 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel, R.S. et al. Circulating CD34+ progenitor cells and risk of mortality in a population with coronary artery disease. Circ. Res. 116, 289–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Eapen, D.J. et al. Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J. Am. Heart Assoc. 3, e001118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levey, A.S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, H. et al. Reducing agents affect inhibitory activities of compounds: results from multiple drug targets. Anal. Biochem. 423, 46–53 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saleem, M.A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  43. Wu, M.J. et al. Rapamycin promotes podocyte migration through the up-regulation of urokinase receptor. Transplant. Proc. 46, 1226–1228 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y. et al. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope. J. Mol. Biol. 365, 1117–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Foster, M.C. et al. APOL1 variants associate with increased risk of CKD among African Americans. J. Am. Soc. Nephrol. 24, 1484–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harrell, F. Regression Modeling Strategies: with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).

Download references

Acknowledgements

We would like to acknowledge the members of the Emory Biobank Team, Emory Clinical Cardiovascular Research Institute (ECCRI) and Atlanta Clinical and Translational Science Institute for the recruitment of participants, compilation of data and preparation of samples. Specifically, we would like to acknowledge M. Awad, T. Varghese, W. Schultz, J. Patrick, M. Namara and A. Samman Tahhan (Emory University Department of Medicine) for assisting in data collection. We also appreciate A. Arnaout and B. Adair for the discussion of APOL1 and suPAR interaction. We are grateful to A.P. Mazar for providing anti-suPAR antibody ATN615. We thank R. Shemer, (Technion, Israel Institute of Technology) and A. Ofir (Rambam Medical Center, Haifa, Israel) for discussions and technical help.

Author information

Authors and Affiliations

Authors

Contributions

S.S.H., K.H.K. and C.W. designed and performed experiments, and wrote the paper; M.E.G. and Y.-A.K. contributed to data analysis; J.L., B.S., H.L., R.R.D., H.W.L., E.H., V.P., M.T., N.J.T., G.G. and N.S. contributed to experiments; K.S. participated in formulating aspects of study design relating to suPAR–APOL1 interaction and developing novel enabling reagents, and collaborated in the writing of the manuscript; V.G., M.M.A., C.A.W., M.S.L., A.T., L.A.I., A.S.L., M.Z., B.I.F., J.B.K. and J.C. contributed to the interpretation of data and manuscript revision; A.A.Q. established the Emory Cardiovascular Biobank that contributed all clinical samples and assisted in manuscript preparation; J.R. and S.S. designed and supervised the study, and wrote the paper. J.R. is supported by grants 5R01DK101350-03 (NIDDK) and 1R01DK106051 (NIDDK). A.A.Q. is supported by grants 5P01HL101398-02, 1P20HL113451-01, 1R56HL126558-01, 1RF1AG051633-01, R01 NS064162-01, R01 HL89650-01, HL095479-01, 1U10HL110302-01, 1DP3DK094346-01, 2P01HL086773-06A1 (NIH). M.E.G., J.C., A.S.L., L.A.I. and A.T. are supported by grants R01DK108803 (NIH) and U01DK085689 (NIDDK). J.C., A.S.L. and L.A.I. are supported by grant R01DK087961 (NIH). E.H. was supported by grant 1RO1 DK106051. Funding for the collection and management of samples was received from the Robert W. Woodruff Health Sciences Center Fund (Atlanta, GA), Emory Heart and Vascular Center (Atlanta, GA), Katz Family Foundation Preventive Cardiology Grant (Atlanta, GA), and National Institutes of Health (NIH) Grants UL1 RR025008 from the Clinical and Translational Science Award program and the Intramural Research Programs of NCI and NIDDK, NIH. This project has also been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Corresponding authors

Correspondence to Sanja Sever or Jochen Reiser.

Ethics declarations

Competing interests

J.R. and S.S. are cofounders of the biotech TRISAQ, and hold patents and stock in the space of proteinuric kidney disease. C.W. has a pending patent on suPAR in diabetic kidney disease. J.R., S.S., C.W. and E.H. are inventors on pending and issued patents related to anti-proteinuric therapies. They stand to gain royalties from present and future commercialization. J.C., A.S.L. and L.I. have a patent pending on GFR estimation and a collaboration agreement with Metabolon. Wake Forest University Health Sciences and B.F have filed for a patent related to APOL1 genetic testing. B.F receives research support from Novartis Pharmaceuticals and is a consultant for Ionis and AstraZeneca Pharmaceuticals.

Supplementary information

Supplementary Figures and Table

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1452 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayek, S., Koh, K., Grams, M. et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med 23, 945–953 (2017). https://doi.org/10.1038/nm.4362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4362

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing