Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus

Abstract

The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood–CSF barrier to gate immune cell entry into the central nervous system1. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques2. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a 3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4–NF-κB signaling or the SPAK–NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IVH triggers inflammation-dependent and bumetanide-sensitive hypersecretion of CSF by the CPE.
Figure 2: CSF hypersecretion after IVH is dependent on inflammation-induced phosphoactivation of the SPAK–NKCC1 complex in the CPE.
Figure 3: TLR4–NF-κB signaling is required for the IVH-induced CSH hypersecretion mediated by upregulated SPAK–NKCC1 complex.

Similar content being viewed by others

References

  1. Lun, M.P., Monuki, E.S. & Lehtinen, M.K. Development and functions of the choroid plexus–cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahle, K.T., Kulkarni, A.V., Limbrick, D.D. Jr. & Warf, B.C. Hydrocephalus in children. Lancet 387, 788–799 (2016).

    Article  PubMed  Google Scholar 

  3. McAllister, J.P. II et al. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health–sponsored symposium “Opportunities for Hydrocephalus Research: Pathways to Better Outcomes”. J. Neurosurg. 123, 1427–1438 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Q. et al. Post-hemorrhagic hydrocephalus: recent advances and new therapeutic insights. J. Neurol. Sci. 375, 220–230 (2017).

    Article  PubMed  Google Scholar 

  5. Karimy, J.K. et al. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg. Focus 41, E10 (2016).

    Article  PubMed  Google Scholar 

  6. Gram, M. et al. Extracellular hemoglobin—mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J. Neuroinflammation 11, 200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, C. et al. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J. Cereb. Blood Flow Metab. 34, 1070–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berkes, J., Viswanathan, V.K., Savkovic, S.D. & Hecht, G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52, 439–451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson, R. et al. Upper respiratory tract viral infection and mucociliary clearance. Eur. J. Respir. Dis. 70, 272–279 (1987).

    CAS  PubMed  Google Scholar 

  10. Doyle, W.J. et al. Nasal and otologic effects of experimental influenza A virus infection. Ann. Otol. Rhinol. Laryngol. 103, 59–69 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Kotas, M.E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nowarski, R., Jackson, R. & Flavell, R.A. The stromal intervention: regulation of immunity and inflammation at the epithelial–mesenchymal barrier. Cell 168, 362–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Sin, B. & Togias, A. Pathophysiology of allergic and nonallergic rhinitis. Proc. Am. Thorac. Soc. 8, 106–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Thiagarajah, J.R., Donowitz, M. & Verkman, A.S. Secretory diarrhoea: mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 12, 446–457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Simard, P.F. et al. Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl. Stroke Res. 2, 227–231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, S.F., Ye, X. & Malik, A.B. Inhibition of NF-κB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100, 1330–1337 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Karimy, J.K. et al. A novel method to study cerebrospinal fluid dynamics in rats. J. Neurosci. Methods 241, 78–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Damkier, H.H., Brown, P.D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Vitari, A.C. et al. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem. J. 397, 223–231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gagnon, K.B. & Delpire, E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol. Rev. 92, 1577–1617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piechotta, K., Garbarini, N., England, R. & Delpire, E. Characterization of the interaction of the stress kinase SPAK with the Na+–K+–2Cl cotransporter in the nervous system: evidence for a scaffolding role of the kinase. J. Biol. Chem. 278, 52848–52856 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yan, Y. et al. Nuclear factor-κB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation. Am. J. Pathol. 173, 1013–1028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Los Heros, P. et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl co-transporters. Biochem. J. 458, 559–573 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi, E. et al. Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters. J. Am. Soc. Nephrol. 26, 1525–1536 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Medzhitov, R. TLR-mediated innate immune recognition. Semin. Immunol. 19, 1–2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol. 19, 3–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Skipor, J., Szczepkowska, A., Kowalewska, M., Herman, A.P. & Lisiewski, P. Profile of Toll-like receptor mRNA expression in the choroid plexus in adult ewes. Acta Vet. Hung. 63, 69–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto, T., Ii, M., Kitazaki, T., Iizawa, Y. & Kimura, H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur. J. Pharmacol. 584, 40–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Alessi, D.R. et al. The WNK–SPAK/OSR1 pathway: master regulator of cation–chloride cotransporters. Sci. Signal. 7, re3 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Piechotta, K., Lu, J. & Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277, 50812–50819 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, S.S. et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J. Am. Soc. Nephrol. 21, 1868–1877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan, Y., Nguyen, H., Dalmasso, G., Sitaraman, S.V. & Merlin, D. Cloning and characterization of a new intestinal inflammation-associated colonic epithelial Ste20-related protein kinase isoform. Biochim. Biophys. Acta 1769, 106–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Lin, S. et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation 9, 46 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon, M.S. et al. Methemoglobin is an endogenous Toll-like receptor 4 ligand—relevance to subarachnoid hemorrhage. Int. J. Mol. Sci. 16, 5028–5046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boivin, M.J., Kakooza, A.M., Warf, B.C., Davidson, L.L. & Grigorenko, E.L. Reducing neurodevelopmental disorders and disability through research and interventions. Nature 527, S155–S160 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Whitelaw, A., Kennedy, C.R. & Brion, L.P. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst. Rev. (2), CD002270 (2001).

  37. Römermann, K. et al. Multiple blood–brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology 117, 182–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Javaheri, S. & Wagner, K.R. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J. Clin. Invest. 92, 2257–2261 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vogh, B.P. & Langham, M.R. Jr. The effect of furosemide and bumetanide on cerebrospinal fluid formation. Brain Res. 221, 171–183 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Stone, S.S. & Warf, B.C. Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infant hydrocephalus: a prospective North American series. J. Neurosurg. Pediatr. 14, 439–446 (2014).

    Article  PubMed  Google Scholar 

  41. Ferguson, C., McKay, M., Harris, R.A. & Homanics, G.E. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator–like effector nuclease (TALEN)-mediated gene inactivation. Alcohol 47, 595–599 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Lodhia, K.R., Shakui, P. & Keep, R.F. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl. 96, 207–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Jinno, F. et al. Investigation of the unique metabolic fate of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242) in rats and dogs using two types of 14C-labeled compounds having different labeled positions. Arzneimittelforschung 61, 458–471 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Gárate, I. et al. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J. Neuroinflammation 11, 8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng, Y. et al. Neuroprotective effects of resatorvid against traumatic brain injury in rat: involvement of neuronal autophagy and TLR4 signaling pathway. Cell. Mol. Neurobiol. 37, 155–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Su, F. et al. Protective effect of ginsenosides Rg1 and Re on lipopolysaccharide-induced sepsis by competitive binding to Toll-like receptor 4. Antimicrob. Agents Chemother. 59, 5654–5663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nugent, B.M., Valenzuela, C.V., Simons, T.J. & McCarthy, M.M. Kinases SPAK and OSR1 are upregulated by estradiol and activate NKCC1 in the developing hypothalamus. J. Neurosci. 32, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D.R. Alessi (Dundee) and R.P. Lifton (Rockefeller) for their support. K.T.K. is supported by the March of Dimes Basil O'Connor Award, a Simons Foundation SFARI Grant, the Hydrocephalus Association Innovator Award, and the NIH (4K12NS080223-05). J.M.S. is supported by the National Institute of Neurological Disorders and Stroke (NINDS) (NS060801; NS061808) and the US Department of Veterans Affairs (1BX002889); R.M. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

K.T.K., J.M.S., V.G., and J.K.K. conceived and designed the study. J.K.K., J.Z., D.B.K., B.C.T., and J.A.S. preformed molecular and physiological experiments, data analysis for IVH surgery, genetic and pharmacological drug treatment, CSF secretion measurement, and western blot, IHC, and ventricular volume analyses. K.T.K., J.M.S., J.Z., D.D., C.G.F., and J.K.K. drafted the manuscript and figures. X.Z., M.S.M., J.M., A.V., M.L.D., E.D., S.L.A., M.G., and R.M. provided expertise and collaboration in drafting the manuscript. All authors contributed to critical editing and data presentation within the manuscript. J.M.S. and K.T.K. are the principal investigators and are responsible for the oversight of this study.

Corresponding author

Correspondence to Kristopher T Kahle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–4 (PDF 3093 kb)

Supplementary Data

Uncropped western blot images (PDF 1799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimy, J., Zhang, J., Kurland, D. et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23, 997–1003 (2017). https://doi.org/10.1038/nm.4361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4361

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research