Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice

Abstract

Clear cell renal cell carcinomas (ccRCCs) frequently exhibit inactivation of the von Hippel–Lindau tumor-suppressor gene, VHL, and often harbor multiple copy-number alterations in genes that regulate cell cycle progression. We show here that modeling these genetic alterations by combined deletion of Vhl, Trp53 and Rb1 specifically in renal epithelial cells in mice caused ccRCC. These tumors arose from proximal tubule epithelial cells and shared molecular markers and mRNA expression profiles with human ccRCC. Exome sequencing revealed that mouse and human ccRCCs exhibit recurrent mutations in genes associated with the primary cilium, uncovering a mutational convergence on this organelle and implicating a subset of ccRCCs as genetic ciliopathies. Different mouse tumors responded differently to standard therapies for advanced human ccRCC, mimicking the range of clinical behaviors in the human disease. Inhibition of hypoxia-inducible factor (HIF)-α transcription factors with acriflavine as third-line therapy had therapeutic effects in some tumors, providing preclinical evidence for further investigation of HIF-α inhibition as a ccRCC treatment. This autochthonous mouse ccRCC model represents a tool to investigate the biology of ccRCC and to identify new treatment strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Renal epithelial cell–specific co-deletion of Vhl, Trp53 and Rb1 permits the evolution of ccRCCs.
Figure 2: ccRCCs in VhlΔ/ΔTrp53Δ/ΔRb1Δ/Δ mice exhibit HIF-α and mTORC1 pathway activation.
Figure 3: ccRCCs in VhlΔ/ΔTrp53Δ/ΔRb1Δ/Δ mice exhibit global transcriptional similarities to human ccRCCs.
Figure 4: Copy-number variations in mouse ccRCCs are also present in the subset of human ccRCCs with p53–G1/S alterations.
Figure 5: Exome sequencing reveals that mouse and human ccRCCs exhibit recurrent mutations of genes associated with the primary cilium.
Figure 6: ccRCCs in VhlΔ/ΔTrp53Δ/ΔRb1Δ/Δ mice exhibit varying patterns of therapeutic sensitivity and resistance.

References

  1. 1

    Hsieh, J.J. et al. Renal cell carcinoma. Nat Rev Dis Primers 3, 17009 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Ghatalia, P. et al. Checkpoint inhibitors for the treatment of renal cell carcinoma. Curr. Treat. Options Oncol. 18, 7 (2017).

    Article  PubMed  Google Scholar 

  3. 3

    Choueiri, T.K. & Motzer, R.J. Systemic therapy for metastatic renal-cell carcinoma. N. Engl. J. Med. 376, 354–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Moore, L.E. et al. Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 7, e1002312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Nickerson, M.L. et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  Google Scholar 

  7. 7

    Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Mandriota, S.J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Frew, I.J. & Moch, H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu. Rev. Pathol. 10, 263–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  11. 11

    Frew, I.J. et al. pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J. 27, 1747–1757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Lehmann, H., Vicari, D., Wild, P.J. & Frew, I.J. Combined deletion of Vhl and Kif3a accelerates renal cyst formation. J. Am. Soc. Nephrol. 26, 2778–2788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Albers, J. et al. Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO Mol. Med. 5, 949–964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Wang, S.-S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl. Acad. Sci. USA 111, 16538–16543 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Nargund, A.M. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18, 2893–2906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Davis, C.F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Ricketts, C.J. & Linehan, W.M. Gender specific mutation incidence and survival associations in clear cell renal cell carcinoma (CCRCC). PLoS One 10, e0140257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Gordan, J.D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Schönenberger, D. et al. Formation of renal cysts and tumors in Vhl/Trp53-deficient mice requires HIF1α and HIF2α. Cancer Res. 76, 2025–2036 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Cheval, L., Pierrat, F., Rajerison, R., Piquemal, D. & Doucet, A. Of mice and men: divergence of gene expression patterns in kidney. PLoS One 7, e46876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Klatte, T. et al. Gain of chromosome 8q is associated with metastases and poor survival of patients with clear cell renal cell carcinoma. Cancer 118, 5777–5782 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Westcott, P.M.K. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  Google Scholar 

  27. 27

    Guinot, A., Lehmann, H., Wild, P.J. & Frew, I.J. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J. Pathol. 239, 365–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Schraml, P. et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 22, 31–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. USA 106, 17910–17915 (2009).

    Article  PubMed  Google Scholar 

  30. 30

    Shay, J.E.S. et al. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis 35, 1067–1077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Pan, J., Seeger-Nukpezah, T. & Golemis, E.A. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell. Mol. Life Sci. 70, 1849–1874 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Thoma, C.R. et al. pVHL and GSK3β are components of a primary cilium–maintenance signalling network. Nat. Cell Biol. 9, 588–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Gordan, J.D., Thompson, C.B. & Simon, M.C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hase, H. et al. LOXL2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC. Mol. Cancer Res. 12, 1807–1817 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Nishikawa, R. et al. Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma. FEBS Lett. 589, 2136–2145 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Kurozumi, A. et al. Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int. J. Oncol. 48, 1837–1846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Motzer, R.J. et al. Nivolumab versus Everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Haase, V.H., Glickman, J.N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc. Natl. Acad. Sci. USA 98, 1583–1588 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    Article  CAS  Google Scholar 

  43. 43

    Wagner, C.A. et al. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am. J. Physiol. Renal Physiol. 294, F1373–F1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Pollard, P.J. et al. Targeted inactivation of Fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 11, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Custer, M., Lötscher, M., Biber, J., Murer, H. & Kaissling, B. Expression of Na–Pi cotransport in rat kidney: localization by RT–PCR and immunohistochemistry. Am. J. Physiol. 266, F767–F774 (1994).

    CAS  PubMed  Google Scholar 

  46. 46

    Dobin, A. et al. STAR: ultrafast universal RNA–seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA–seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  Google Scholar 

  49. 49

    Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA–seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  Google Scholar 

  53. 53

    Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Magi, A. et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 14, R120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Rosenbloom, K.R. et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 43, D670–D681 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to I.J.F. from the Swiss National Science Foundation (PP00P3_128257), the European Research Council (260316) and the VHL Family Alliance. We are most grateful to Johannes Loffing (University of Zurich), Jürg Biber (University of Zurich) and the late Patrick Pollard (University of Oxford) for providing antibodies.

Author information

Affiliations

Authors

Contributions

I.J.F. and S.H. designed the study; S.H., D.S., A.C. and L.B. conducted experiments; N.C.T., M.P., I.J.F. and S.H. conducted bioinformatic analyses; P.J.W. and H.M. conducted pathological analyses; I.J.F. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Ian J Frew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9. (PDF 18589 kb)

Supplementary Table 1

RNA sequencing analysis of normal kidney cortices and mouse ccRCCs. (XLSX 4548 kb)

Supplementary Table 2

Copy number variations in mouse ccRCCs. (XLSX 68 kb)

Supplementary Table 3

Collation of high impact mutations and high VAF SNVs in mouse ccRCC tumours. (XLSX 68 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harlander, S., Schönenberger, D., Toussaint, N. et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat Med 23, 869–877 (2017). https://doi.org/10.1038/nm.4343

Download citation

Further reading