Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metformin ameliorates core deficits in a mouse model of fragile X syndrome


Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1−/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Chronic metformin treatment corrects the social deficit, repetitive behavior, aberrant dendritic spine morphology and exaggerated LTD in Fmr1−/y mice.
Figure 2: Chronic metformin treatment corrects macroorchidism, decreases translation and reduces the phosphorylation of upstream eIF4E effectors.


  1. 1

    Gkogkas, C.G. et al. Cell Rep. 9, 1742–1755 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Hou, L. et al. Neuron 51, 441–454 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Dziembowska, M. et al. Am. J. Med. Genet. A. 161A, 1897–1903 (2013).

    Article  Google Scholar 

  4. 4

    Leigh, M.J. et al. J. Dev. Behav. Pediatr. 34, 147–155 (2013).

    Article  Google Scholar 

  5. 5

    Sidhu, H., Dansie, L.E., Hickmott, P.W., Ethell, D.W. & Ethell, I.M. J. Neurosci. 34, 9867–9879 (2014).

    Article  Google Scholar 

  6. 6

    Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Cell Metab. 20, 953–966 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Ming, M. et al. PLoS One 9, e114573 (2014).

    Article  Google Scholar 

  8. 8

    Wang, J. et al. Cell Stem Cell 11, 23–35 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Soares, H.P., Ni, Y., Kisfalvi, K., Sinnett-Smith, J. & Rozengurt, E. PLoS One 8, e57289 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Łabuzek, K. et al. Pharmacol. Rep. 62, 956–965 (2010).

    Article  Google Scholar 

  11. 11

    Hagerman, R., Au, J. & Hagerman, P. J. Neurodev. Disord. 3, 211–224 (2011).

    Article  Google Scholar 

  12. 12

    Bhattacharya, A. et al. Neuron 76, 325–337 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Osterweil, E.K. et al. Neuron 77, 243–250 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Udagawa, T. et al. Nat. Med. 19, 1473–1477 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Li, J., Benashski, S.E., Venna, V.R. & McCullough, L.D. Stroke 41, 2645–2652 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Khang, R., Park, C. & Shin, J.H. Neurosci. Lett. 579, 145–150 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Jin, J. et al. Neuromolecular Med. 18, 581–592 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Singh, J., Olle, B., Suhail, H., Felicella, M.M. & Giri, S. J. Neurochem. 138, 86–100 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Lavoie, H. & Therrien, M. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Berry-Kravis, E. et al. Sci. Transl. Med. 8, 321ra5 (2016).

    Article  Google Scholar 

  21. 21

    Monyak, R.E. et al. Mol. Psychiatry (2016).

  22. 22

    Forslund, K. et al. Nature 528, 262–266 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Hsiao, E.Y. et al. Cell 155, 1451–1463 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Gkogkas, C.G. et al. Nature 493, 371–377 (2013).

    CAS  Article  Google Scholar 

  25. 25

    McKinney, B.C., Grossman, A.W., Elisseou, N.M. & Greenough, W.T. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 136B, 98–102 (2005).

    Article  Google Scholar 

  26. 26

    Schmidt, E.K., Clavarino, G., Ceppi, M. & Pierre, P. Nat. Methods 6, 275–277 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Mogil, J.S. et al. Pain 126, 24–34 (2006).

    Article  Google Scholar 

Download references


This work is supported by the FRAXA Research Foundation, Brain Canada/FNC, a CIHR foundation grant (FDN-148423) and Brain & Behavior Research Foundation grants (24365) to N.S.; a Wellcome Trust/Royal Society Sir Henry Dale grant (107687/Z/15/Z) to C.G.G.; the Canada Research Chair Program (950-231066) to J.-C.L.; and a Brain Canada/NeuroDevNet Postdoctoral Training Award to J.P.

Author information




I.G., A.K. and J.P. designed the experiments, performed data analysis and wrote the manuscript. I.G., A.K., J.P., A.A.-V., E.F., R.C., V.S., T.P., A.N., S.W., S.M.J., C.C., E.A.M. and C.G.G. designed and carried out experiments. A.S., V.T.T., I.A.G. and K.G. assisted with experiments. K.N. supervised the project. J.-C.L., C.G.G. and N.S. supervised the project, designed experiments and edited the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Nahum Sonenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–17 and Supplementary Tables 1 and 2. (PDF 5149 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gantois, I., Khoutorsky, A., Popic, J. et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med 23, 674–677 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing