Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pericytes impair capillary blood flow and motor function after chronic spinal cord injury

Abstract

Blood vessels in the central nervous system (CNS) are controlled by neuronal activity. For example, widespread vessel constriction (vessel tone) is induced by brainstem neurons that release the monoamines serotonin and noradrenaline, and local vessel dilation is induced by glutamatergic neuron activity. Here we examined how vessel tone adapts to the loss of neuron-derived monoamines after spinal cord injury (SCI) in rats. We find that, months after the imposition of SCI, the spinal cord below the site of injury is in a chronic state of hypoxia owing to paradoxical excess activity of monoamine receptors (5-HT1) on pericytes, despite the absence of monoamines. This monoamine-receptor activity causes pericytes to locally constrict capillaries, which reduces blood flow to ischemic levels. Receptor activation in the absence of monoamines results from the production of trace amines (such as tryptamine) by pericytes that ectopically express the enzyme aromatic L-amino acid decarboxylase (AADC), which synthesizes trace amines directly from dietary amino acids (such as tryptophan). Inhibition of monoamine receptors or of AADC, or even an increase in inhaled oxygen, produces substantial relief from hypoxia and improves motoneuron and locomotor function after SCI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trace amines constrict capillaries at pericytes after SCI.
Figure 2: AADC, trace amines and 5-HT1B receptors are coexpressed in pericytes after SCI.
Figure 3: Poor blood flow and hypoxia after chronic SCI.
Figure 4: Treatments that dilate vessels and improve oxygenation after SCI lead to increased motor activity.
Figure 5: Thoracic contusion or staggered-hemisection injury induces chronic hypoxia that impairs locomotion.

Similar content being viewed by others

References

  1. Acker, T. & Acker, H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J. Exp. Biol. 207, 3171–3188 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Martirosyan, N.L. et al. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J. Neurosurg. Spine 15, 238–251 (2011).

    Article  PubMed  Google Scholar 

  3. Peña, F. & Ramirez, J.M. Hypoxia-induced changes in neuronal network properties. Mol. Neurobiol. 32, 251–283 (2005).

    Article  PubMed  Google Scholar 

  4. Hamilton, N.B., Attwell, D. & Hall, C.N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Itoh, Y. & Suzuki, N. Control of brain capillary blood flow. J. Cereb. Blood Flow Metab. 32, 1167–1176 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reber, F., Gersch, U. & Funk, R.W. Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture. Graefes Arch. Clin. Exp. Ophthalmol. 241, 140–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Barcroft, H., Bonnar, W.M., Edholm, O.G. & Effron, A.S. On sympathetic vasoconstrictor tone in human skeletal muscle. J. Physiol. (Lond.) 102, 21–31 (1943).

    Article  CAS  Google Scholar 

  9. Westcott, E.B. & Segal, S.S. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 20, 217–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonvento, G. et al. Evidence for differing origins of the serotonergic innervation of major cerebral arteries and small pial vessels in the rat. J. Neurochem. 56, 681–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, Z., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Cohen, Z., Molinatti, G. & Hamel, E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood Flow Metab. 17, 894–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Lincoln, J. Innervation of cerebral arteries by nerves containing 5-hydroxytryptamine and noradrenaline. Pharmacol. Ther. 68, 473–501 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hardebo, J.E. & Owman, C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann. Neurol. 8, 1–11 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Murray, K.C. et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown, A., Nabel, A., Oh, W., Etlinger, J.D. & Zeman, R.J. Perfusion imaging of spinal cord contusion: injury-induced blockade and partial reversal by β2-agonist treatment in rats. J. Neurosurg. Spine 20, 164–171 (2014).

    Article  PubMed  Google Scholar 

  17. Kang, C.E., Clarkson, R., Tator, C.H., Yeung, I.W. & Shoichet, M.S. Spinal cord blood flow and blood vessel permeability measured by dynamic computed tomography imaging in rats after localized delivery of fibroblast growth factor. J. Neurotrauma 27, 2041–2053 (2010).

    Article  PubMed  Google Scholar 

  18. Sinescu, C. et al. Molecular basis of vascular events following spinal cord injury. J. Med. Life 3, 254–261 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Kundi, S., Bicknell, R. & Ahmed, Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci. Res. 76, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Murray, K.C. et al. Polysynaptic excitatory postsynaptic potentials that trigger spasms after spinal cord injury in rats are inhibited by 5-HT1B and 5-HT1F receptors. J. Neurophysiol. 106, 925–943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rank, M.M. et al. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury. J. Neurophysiol. 105, 410–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Commissiong, J.W. The synthesis and metabolism of catecholamines in the spinal cord of the rat after acute and chronic transections. Brain Res. 347, 104–111 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. et al. Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J. Neurophysiol. 111, 145–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wienecke, J. et al. Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines. J. Neurosci. 34, 11984–12000 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Berry, M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 90, 257–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Burchett, S.A. & Hicks, T.P. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 79, 223–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Gozal, E.A. et al. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front. Neural Circuits 8, 134 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Glaeser, B.S., Maher, T.J. & Wurtman, R.J. Changes in brain levels of acidic, basic, and neutral amino acids after consumption of single meals containing various proportions of protein. J. Neurochem. 41, 1016–1021 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Gessa, G.L., Biggio, G., Fadda, F., Corsini, G.U. & Tagliamonte, A. Effect of the oral administration of tryptophan-free amino acid mixtures on serum tryptophan, brain tryptophan and serotonin metabolism. J. Neurochem. 22, 869–870 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Hawkins, R.A., O'Kane, R.L., Simpson, I.A. & Viña, J.R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr. 136 (Suppl. 1), 218S–226S (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Boess, F.G. & Martin, I.L. Molecular biology of 5-HT receptors. Neuropharmacology 33, 275–317 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. U'Prichard, D.C., Greenberg, D.A. & Snyder, S.H. Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol. Pharmacol. 13, 454–473 (1977).

    CAS  PubMed  Google Scholar 

  33. Bunzow, J.R. et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181–1188 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Anwar, M.A., Ford, W.R., Broadley, K.J. & Herbert, A.A. Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and β-phenylethylamine. Br. J. Pharmacol. 165, 2191–2202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Broadley, K.J., Fehler, M., Ford, W.R. & Kidd, E.J. Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines. Eur. J. Pharmacol. 715, 370–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Cohen, Z. et al. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J. Cereb. Blood Flow Metab. 19, 908–917 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Rennels, M.L. & Nelson, E. Capillary innervation in the mammalian central nervous system: an electron microscopic demonstration. Am. J. Anat. 144, 233–241 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Busija, D.W. & Leffler, C.W. Postjunctional alpha 2-adrenoceptors in pial arteries of anesthetized newborn pigs. Dev. Pharmacol. Ther. 10, 36–46 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Edvinsson, L., Degueurce, A., Duverger, D., MacKenzie, E.T. & Scatton, B. Central serotonergic nerves project to the pial vessels of the brain. Nature 306, 55–57 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong, Z. & Sperelakis, N. Regulation of L-type calcium channels of vascular smooth muscle cells. J. Mol. Cell. Cardiol. 27, 75–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Dalkara, T., Gursoy-Ozdemir, Y. & Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 122, 1–9 (2011).

    Article  PubMed  Google Scholar 

  45. Hall, C.N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burdyga, T. & Borysova, L. Calcium signalling in pericytes. J. Vasc. Res. 51, 190–199 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Di Narzo, A.F. et al. Decrease of mRNA editing after spinal cord injury is caused by down-regulation of ADAR2 that is triggered by inflammatory response. Sci. Rep. 5, 12615 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Unekawa, M. et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain Res. 1320, 69–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marina, N. et al. Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat. Hypertension 65, 775–783 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Schroeder, J.L., Highsmith, J.M., Young, H.F. & Mathern, B.E. Reduction of hypoxia by perfluorocarbon emulsion in a traumatic spinal cord injury model. J. Neurosurg. Spine 9, 213–220 (2008).

    Article  PubMed  Google Scholar 

  52. Wilson, R.J., Chersa, T. & Whelan, P.J. Tissue PO2 and the effects of hypoxia on the generation of locomotor-like activity in the in vitro spinal cord of the neonatal mouse. Neuroscience 117, 183–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Attwell, D., Mishra, A., Hall, C.N., O'Farrell, F.M. & Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 36, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Hill, R.A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gorassini, M.A., Norton, J.A., Nevett-Duchcherer, J., Roy, F.D. & Yang, J.F. Changes in locomotor muscle activity after treadmill training in subjects with incomplete spinal cord injury. J. Neurophysiol. 101, 969–979 (2009).

    Article  PubMed  Google Scholar 

  57. Kapitza, S. et al. Tail spasms in rat spinal cord injury: changes in interneuronal connectivity. Exp. Neurol. 236, 179–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Beauparlant, J. et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 136, 3347–3361 (2013).

    Article  PubMed  Google Scholar 

  59. Navarrete-Opazo, A. & Mitchell, G.S. Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller, G.M. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. 116, 164–176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Geddes and Y. Ma for technical assistance. This research was supported by the Canadian Institutes of Health Research (MOP 14697; D.J.B.) and the US National Institutes of Health (NIH, R01NS47567; D.J.B. and K.F.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed all in vitro rat experiments and in vivo pO2 measurements, contributed to all other rat studies and co-wrote the paper. R.V. and K.F. contributed to the rat in vivo locomotor experiments. I.R.W., K.F., R.V., L.S. and A.M.L.-O. contributed to immunolabeling experiments. I.R.W., L.S. and M.V.B. contributed to blood flow measurements. L.S. performed all sacral SCI surgeries. M.J.S., S.B. and K.K.F. contributed to analysis and editing. A.F.D.N. and S.D. performed mRNA-seq analysis. D.J.B. performed in vitro and in vivo rat experiments, directly supervised all the experiments and co-wrote the paper. K.F. and D.J.B. shared senior authorship.

Corresponding author

Correspondence to David J Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 5699 kb)

Supplementary Video (MP4 8127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lucas-Osma, A., Black, S. et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 23, 733–741 (2017). https://doi.org/10.1038/nm.4331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4331

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research