Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer's disease


We directly assessed mesial temporal activity using intracranial foramen ovale electrodes in two patients with Alzheimer's disease (AD) without a history or EEG evidence of seizures. We detected clinically silent hippocampal seizures and epileptiform spikes during sleep, a period when these abnormalities were most likely to interfere with memory consolidation. The findings in these index cases support a model in which early development of occult hippocampal hyperexcitability may contribute to the pathogenesis of AD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Subclinical mTL seizures and spikes captured with FO electrodes in two patients with AD.
Figure 2: mTL spikes detected on FO electrodes are absent from scalp EEG recordings.


  1. 1

    Alzheimer, A. Neurol. Cent. 23, 1129–1136 (1906).

    Google Scholar 

  2. 2

    Blocq, P. & Marinesco, G. Sem. Med. 12, 445–446 (1892).

    Google Scholar 

  3. 3

    Noebels, J. Epilepsia 52 (Suppl. 1), 39–46 (2011).

    Article  Google Scholar 

  4. 4

    Selkoe, D.J. & Hardy, J. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  Article  Google Scholar 

  5. 5

    Aizenstein, H.J. et al. Arch. Neurol. 65, 1509–1517 (2008).

    Article  Google Scholar 

  6. 6

    Fjell, A.M., McEvoy, L., Holland, D., Dale, A.M. & Walhovd, K.B. J. Neurosci. 33, 8237–8242 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Bernhardt, B.C. et al. Neuroimage 42, 515–524 (2008).

    Article  Google Scholar 

  8. 8

    Koliatsos, V.E. et al. Acta Neuropathol. 112, 147–162 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Wieser, H.G., Elger, C.E. & Stodieck, S.R. Electroencephalogr. Clin. Neurophysiol. 61, 314–322 (1985).

    CAS  Article  Google Scholar 

  10. 10

    Sanchez, P.E. et al. Proc. Natl. Acad. Sci. USA 109, E2895–E2903 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Bakker, A. et al. Neuron 74, 467–474 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Lynch, B.A. et al. Proc. Natl. Acad. Sci. USA 101, 9861–9866 (2004).

    CAS  Article  Google Scholar 

  13. 13

    White, J.C., Langston, J.W. & Pedley, T.A. Neurology 27, 1061–1068 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Sheth, S.A. et al. Epilepsia 55, 713–724 (2014).

    Article  Google Scholar 

  15. 15

    Pastor, J., Sola, R.G., Hernando-Requejo, V., Navarrete, E.G. & Pulido, P. Epilepsia 49, 464–469 (2008).

    Article  Google Scholar 

  16. 16

    Kleen, J.K. et al. Neurology 81, 18–24 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Binnie, C.D. Lancet Neurol. 2, 725–730 (2003).

    Article  Google Scholar 

  18. 18

    Tatum, W.O. IV, Ross, J. & Cole, A.J. Neurology 50, 1472–1475 (1998).

    Article  Google Scholar 

  19. 19

    Vossel, K.A. et al. Ann. Neurol. 80, 858–870 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Mander, B.A., Winer, J.R., Jagust, W.J. & Walker, M.P. Trends Neurosci. 39, 552–566 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Born, H.A. et al. J. Neurosci. 34, 3826–3840 (2014).

    Article  Google Scholar 

  22. 22

    Kam, K., Duffy, Á.M., Moretto, J., LaFrancois, J.J. & Scharfman, H.E. Sci. Rep. 6, 20119 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Malow, B.A., Lin, X., Kushwaha, R. & Aldrich, M.S. Epilepsia 39, 1309–1316 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Rao, S.C., Dove, G., Cascino, G.D. & Petersen, R.C. Epilepsy Behav. 14, 118–120 (2009).

    Article  Google Scholar 

  25. 25

    Sarkis, R.A., Dickerson, B.C., Cole, A.J. & Chemali, Z.N. J. Neuropsychiatry Clin. Neurosci. 28, 56–61 (2016).

    Article  Google Scholar 

  26. 26

    Blessed, G., Tomlinson, B.E. & Roth, M. Br. J. Psychiatry 114, 797–811 (1968).

    CAS  Article  Google Scholar 

  27. 27

    Nasreddine, Z.S. et al. J. Am. Geriatr. Soc. 53, 695–699 (2005).

    Article  Google Scholar 

  28. 28

    Klassen, T. et al. Cell 145, 1036–1048 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Reid, J.G. et al. BMC Bioinformatics 15, 30 (2014).

    Article  Google Scholar 

Download references


This work was supported by NIH-NINDS R25-NS065743 (A.D.L.), the Massachusetts General Hospital Executive Committee on Research (A.D.L.), NIH-NINDS U01-NS090362 (A.G.), Citizens United for Research in Epilepsy (A.G.), NIH-NINDS R01-NS029709 (J.N.), and the Blue Bird Circle Foundation (J.N.).

Author information




A.D.L., G.D., A.G., E.N.E., J.N., and A.J.C. drafted and edited the manuscript. A.D.L., G.D., and A.G. prepared the figures. A.D.L. performed the spike quantification. A.G. performed the genetic analysis. A.J.C. and J.N. conceived the study.

Corresponding author

Correspondence to Andrew J Cole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1,2 (PDF 885 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lam, A., Deck, G., Goldman, A. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer's disease. Nat Med 23, 678–680 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing