Decreased alertness due to sleep loss increases pain sensitivity in mice


Extended daytime and nighttime activities are major contributors to the growing sleep deficiency epidemic1,2, as is the high prevalence of sleep disorders like insomnia. The consequences of chronic insufficient sleep for health remain uncertain3. Sleep quality and duration predict presence of pain the next day in healthy subjects4,5,6,7, suggesting that sleep disturbances alone may worsen pain, and experimental sleep deprivation in humans supports this claim8,9. We demonstrate that sleep loss, but not sleep fragmentation, in healthy mice increases sensitivity to noxious stimuli (referred to as 'pain') without general sensory hyper-responsiveness. Moderate daily repeated sleep loss leads to a progressive accumulation of sleep debt and also to exaggerated pain responses, both of which are rescued after restoration of normal sleep. Caffeine and modafinil, two wake-promoting agents that have no analgesic activity in rested mice, immediately normalize pain sensitivity in sleep-deprived animals, without affecting sleep debt. The reversibility of mild sleep-loss-induced pain by wake-promoting agents reveals an unsuspected role for alertness in setting pain sensitivity. Clinically, insufficient or poor-quality sleep may worsen pain and this enhanced pain may be reduced not by analgesics, whose effectiveness is reduced, but by increasing alertness or providing better sleep.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Acute sleep deprivation progressively increases sleepiness and sensitivity to pain.
Figure 2: Chronic sleep deprivation progressively increases sleepiness.
Figure 3: Chronic sleep deprivation but not chronic sleep fragmentation progressively increases pain sensitivity.
Figure 4: Caffeine and modafinil, but not ibuprofen or morphine, prevent sleep-deprivation-induced hypersensitivity to pain.


  1. 1

    Van den Bulck, J. Television viewing, computer game playing, and Internet use and self-reported time to bed and time out of bed in secondary-school children. Sleep 27, 101–104 (2004).

    Article  Google Scholar 

  2. 2

    Fossum, I.N., Nordnes, L.T., Storemark, S.S., Bjorvatn, B. & Pallesen, S. The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behav. Sleep Med. 12, 343–357 (2014).

    Article  Google Scholar 

  3. 3

    Luyster, F.S., Strollo, P.J. Jr., Zee, P.C. & Walsh, J.K. Sleep: a health imperative. Sleep 35, 727–734 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Edwards, R.R., Almeida, D.M., Klick, B., Haythornthwaite, J.A. & Smith, M.T. Duration of sleep contributes to next-day pain report in the general population. Pain 137, 202–207 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Campbell, C.M. et al. Self-reported sleep duration associated with distraction analgesia, hyperemia, and secondary hyperalgesia in the heat–capsaicin nociceptive model. Eur. J. Pain 15, 561–567 (2011).

    Article  Google Scholar 

  6. 6

    Haack, M. et al. Pain sensitivity and modulation in primary insomnia. Eur. J. Pain 16, 522–533 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Smith, M.T., Edwards, R.R., Stonerock, G.L. & McCann, U.D. Individual variation in rapid eye movement sleep is associated with pain perception in healthy women: preliminary data. Sleep 28, 809–812 (2005).

    Article  Google Scholar 

  8. 8

    Lautenbacher, S., Kundermann, B. & Krieg, J.C. Sleep deprivation and pain perception. Sleep Med. Rev. 10, 357–369 (2006).

    Article  Google Scholar 

  9. 9

    Roehrs, T., Hyde, M., Blaisdell, B., Greenwald, M. & Roth, T. Sleep loss and REM sleep loss are hyperalgesic. Sleep 29, 145–151 (2006).

    Article  Google Scholar 

  10. 10

    Mansfield, K.E., Sim, J., Jordan, J.L. & Jordan, K.P. A systematic review and meta-analysis of the prevalence of chronic widespread pain in the general population. Pain 157, 55–64 (2016).

    Article  Google Scholar 

  11. 11

    Finan, P.H., Goodin, B.R. & Smith, M.T. The association of sleep and pain: an update and a path forward. J. Pain 14, 1539–1552 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Smith, M.T. et al. Sleep onset insomnia symptoms during hospitalization for major burn injury predict chronic pain. Pain 138, 497–506 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Davies, K.A. et al. Restorative sleep predicts the resolution of chronic widespread pain: results from the EPIFUND study. Rheumatology (Oxford) 47, 1809–1813 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Kim, H. et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 109, 488–496 (2004).

    Article  Google Scholar 

  15. 15

    Kuna, S.T. et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep 35, 1223–1233 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Meerlo, P., Pragt, B.J. & Daan, S. Social stress induces high intensity sleep in rats. Neurosci. Lett. 225, 41–44 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Rhudy, J.L. & Meagher, M.W. Fear and anxiety: divergent effects on human pain thresholds. Pain 84, 65–75 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Kaprio, J. & Koskenvuo, M. Genetic and environmental factors in complex diseases: the older Finnish Twin Cohort. Twin Res. 5, 358–365 (2002).

    Article  Google Scholar 

  19. 19

    Nielsen, C.S. et al. Individual differences in pain sensitivity: genetic and environmental contributions. Pain 136, 21–29 (2008).

    Article  Google Scholar 

  20. 20

    Leemburg, S. et al. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc. Natl. Acad. Sci. USA 107, 15939–15944 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Clasadonte, J., McIver, S.R., Schmitt, L.I., Halassa, M.M. & Haydon, P.G. Chronic sleep restriction disrupts sleep homeostasis and behavioral sensitivity to alcohol by reducing the extracellular accumulation of adenosine. J. Neurosci. 34, 1879–1891 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Hakki Onen, S., Alloui, A., Jourdan, D., Eschalier, A. & Dubray, C. Effects of rapid eye movement (REM) sleep deprivation on pain sensitivity in the rat. Brain Res. 900, 261–267 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Tomim, D.H. et al. The pronociceptive effect of paradoxical sleep deprivation in rats: evidence for a role of descending pain modulation mechanisms. Mol. Neurobiol. 53, 1706–1717 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Wang, P.K. et al. Short-term sleep disturbance–induced stress does not affect basal pain perception, but does delay postsurgical pain recovery. J. Pain 16, 1186–1199 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Boada, M.D. & Woodbury, C.J. Physiological properties of mouse skin sensory neurons recorded intracellularly in vivo: temperature effects on somal membrane properties. J. Neurophysiol. 98, 668–680 (2007).

    Article  Google Scholar 

  26. 26

    Boada, M.D. & Woodbury, C.J. Myelinated skin sensory neurons project extensively throughout adult mouse substantia gelatinosa. J. Neurosci. 28, 2006–2014 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Borbély, A.A. & Achermann, P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 14, 557–568 (1999).

    Google Scholar 

  28. 28

    Mignot, E. Why we sleep: the temporal organization of recovery. PLoS Biol. 6, e106 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29

    Haack, M., Lee, E., Cohen, D.A. & Mullington, J.M. Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain. Pain 145, 136–141 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Fredholm, B.B., Bättig, K., Holmén, J., Nehlig, A. & Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83–133 (1999).

    CAS  Google Scholar 

  31. 31

    Qu, W.M., Huang, Z.L., Xu, X.H., Matsumoto, N. & Urade, Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J. Neurosci. 28, 8462–8469 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Huang, Z.L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8, 858–859 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Petrovsky, N. et al. Sleep deprivation disrupts prepulse inhibition and induces psychosis-like symptoms in healthy humans. J. Neurosci. 34, 9134–9140 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Schuh-Hofer, S. et al. One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain 154, 1613–1621 (2013).

    Article  Google Scholar 

  35. 35

    Ødegård, S.S. et al. The effect of sleep restriction on laser evoked potentials, thermal sensory and pain thresholds and suprathreshold pain in healthy subjects. Clin. Neurophysiol. 126, 1979–1987 (2015).

    Article  Google Scholar 

  36. 36

    Tiede, W. et al. Sleep restriction attenuates amplitudes and attentional modulation of pain-related evoked potentials, but augments pain ratings in healthy volunteers. Pain 148, 36–42 (2010).

    Article  Google Scholar 

  37. 37

    Ferraro, L. et al. The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. Eur. J. Pharmacol. 306, 33–39 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Solinas, M. et al. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. 22, 6321–6324 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Volkow, N.D. et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. J. Am. Med. Assoc. 301, 1148–1154 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Volkow, N.D. et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J. Neurosci. 32, 6711–6717 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Volkow, N.D. et al. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl. Psychiatry 5, e549 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Bonaventura, J. et al. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor–dopamine D2 receptor heterotetramer. Proc. Natl. Acad. Sci. USA 112, E3609–E3618 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Taylor, A.M., Becker, S., Schweinhardt, P. & Cahill, C. Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157, 1194–1198 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Treister, R. et al. Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 147, 187–193 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Wood, P.B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    Article  Google Scholar 

  46. 46

    Edwards, R.R. et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain 157, 1851–1871 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Skinner, G.O., Damasceno, F., Gomes, A. & de Almeida, O.M. Increased pain perception and attenuated opioid antinociception in paradoxical sleep-deprived rats are associated with reduced tyrosine hydroxylase staining in the periaqueductal gray matter and are reversed by l-DOPA. Pharmacol. Biochem. Behav. 99, 94–99 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Steinmiller, C.L. et al. Differential effect of codeine on thermal nociceptive sensitivity in sleepy versus nonsleepy healthy subjects. Exp. Clin. Psychopharmacol. 18, 277–283 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Faraut, B. et al. Napping reverses increased pain sensitivity due to sleep restriction. PLoS One 10, e0117425 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Roehrs, T.A., Harris, E., Randall, S. & Roth, T. Pain sensitivity and recovery from mild chronic sleep loss. Sleep 35, 1667–1672 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Sorge, R.E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11, 629–632 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Latremoliere, A. et al. Reduction of neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. Neuron 86, 1393–1406 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Choi, Y., Yoon, Y.W., Na, H.S., Kim, S.H. & Chung, J.M. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59, 369–376 (1994).

    CAS  Article  Google Scholar 

  54. 54

    Smith, S.B., Crager, S.E. & Mogil, J.S. Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci. 74, 2593–2604 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Vicuña, L. et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell–derived leukocyte elastase. Nat. Med. 21, 518–523 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56

    Le Bars, D., Gozariu, M. & Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 53, 597–652 (2001).

    CAS  Google Scholar 

  57. 57

    Mogil, J.S. et al. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80, 67–82 (1999).

    CAS  Article  Google Scholar 

  58. 58

    Mogil, J.S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    CAS  Article  Google Scholar 

  59. 59

    Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    CAS  Article  Google Scholar 

  61. 61

    Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  Article  Google Scholar 

  62. 62

    Davis, M. Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci. Biobehav. Rev. 4, 241–263 (1980).

    CAS  Article  Google Scholar 

  63. 63

    Geyer, M.A., McIlwain, K.L. & Paylor, R. Mouse genetic models for prepulse inhibition: an early review. Mol. Psychiatry 7, 1039–1053 (2002).

    CAS  Article  Google Scholar 

  64. 64

    Alexandre, C. et al. Sleep-stabilizing effects of E-6199, compared to zopiclone, zolpidem and THIP in mice. Sleep 31, 259–270 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Hennessy, M.B. & Foy, T. Nonedible material elicits chewing and reduces the plasma corticosterone response during novelty exposure in mice. Behav. Neurosci. 101, 237–245 (1987).

    CAS  Article  Google Scholar 

  66. 66

    Libourel, P.A., Corneyllie, A., Luppi, P.H., Chouvet, G. & Gervasoni, D. Unsupervised online classifier in sleep scoring for sleep deprivation studies. Sleep 38, 815–828 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

Download references


This work was supported by NIH grants DE022912 (C.J.W. and T.E.S.), NS038253-11S1 (C.J.W.) and HL095491 (T.E.S.), the IDDRC of Boston Children's Hospital (U54 HD090255) and the Metabolic Physiology Core (P30 DK057521). We are grateful to N. Andrews, O. Peroni, F. Latremoliere, T. Mochizuki, P.-A. Libourel and R. Hersher for advice and technical assistance and O. Mazor of the HMS Research Instrumentation Core for instrument design and fabrication.

Author information




C.A., A.L., T.E.S. and C.J.W. conceived and designed experiments, interpreted the results and wrote the manuscript. C.A., A.L., A.F. and G.M. performed sleep studies and analysis. C.A., A.L., A.F., G.M. and M.Y. performed sleep deprivation experiments. C.A., A.L. and A.F. performed behavioral experiments and analysis.

Corresponding authors

Correspondence to Thomas E Scammell or Clifford J Woolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 1354 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexandre, C., Latremoliere, A., Ferreira, A. et al. Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med 23, 768–774 (2017).

Download citation

Further reading