Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet

Abstract

Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH–germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MZB cells limit the development of atherosclerosis.
Figure 2: MZB cells limit development of atherosclerosis through inhibition of the TFH response.
Figure 3: An HCD activates a homeostatic and anti-inflammatory program in MZB cells.
Figure 4: ATF3 expression in MZB cells controls TFH accumulation in response to an HCD and is required for the atheroprotective effect of MZB cells.
Figure 5: MZB cells limit TFH motility and control the proatherogenic TFH–GC response through upregulation of PDL1.
Figure 6: MZB cells control the TFH program during atherosclerosis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Libby, P., Lichtman, A.H. & Hansson, G.K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38, 1092–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ait-Oufella, H., Sage, A.P., Mallat, Z. & Tedgui, A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ. Res. 114, 1640–1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Sage, A.P. & Mallat, Z. Multiple potential roles for B cells in atherosclerosis. Ann. Med. 46, 297–303 (2014).

    Article  PubMed  Google Scholar 

  4. Tsiantoulas, D., Sage, A.P., Mallat, Z. & Binder, C.J. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler. Thromb. Vasc. Biol. 35, 296–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Kyaw, T., Tipping, P., Bobik, A. & Toh, B.H. Protective role of natural IgM-producing B1a cells in atherosclerosis. Trends Cardiovasc. Med. 22, 48–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Sage, A.P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice—brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Candando, K.M., Lykken, J.M. & Tedder, T.F. B10 cell regulation of health and disease. Immunol. Rev. 259, 259–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosser, E.C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Dang, V.D., Hilgenberg, E., Ries, S., Shen, P. & Fillatreau, S. From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr. Opin. Immunol. 28, 77–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Sage, A.P. et al. Regulatory B cell–specific interleukin-10 is dispensable for atherosclerosis development in mice. Arterioscler. Thromb. Vasc. Biol. 35, 1770–1773 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Strom, A.C. et al. B regulatory cells are increased in hypercholesterolaemic mice and protect from lesion development via IL-10. Thromb. Haemost. 114, 835–847 (2015).

    Article  PubMed  Google Scholar 

  14. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Clement, M. et al. Control of the T follicular helper–germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Grasset, E.K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl. Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Witt, C.M., Won, W.J., Hurez, V. & Klug, C.A. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells. J. Immunol. 171, 2783–2788 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Gold, E.S. et al. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J. Exp. Med. 209, 807–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. De Nardo, D. et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15, 152–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Hoetzenecker, W. et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat. Med. 18, 128–134 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Herieka, M. & Erridge, C. High-fat meal induced postprandial inflammation. Mol. Nutr. Food Res. 58, 136–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Good-Jacobson, K.L. et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 11, 535–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cinamon, G., Zachariah, M.A., Lam, O.M., Foss, F.W. Jr. & Cyster, J.G. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9, 54–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Pereira, J.P., Kelly, L.M. & Cyster, J.G. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22, 413–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cyster, J.G., Dang, E.V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, C.S., Deenick, E.K., Batten, M. & Tangye, S.G. The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209, 1241–1253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zinselmeyer, B.H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210, 757–774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weill, J.C., Weller, S. & Reynaud, C.A. Human marginal zone B cells. Annu. Rev. Immunol. 27, 267–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Descatoire, M. et al. Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J. Exp. Med. 211, 987–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J.Y. et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moriyama, S. et al. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211, 1297–1305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weber, J.P. et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Krüppel-like factor 2. J. Exp. Med. 212, 217–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kroenke, M.A. et al. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. J. Immunol. 188, 3734–3744 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X. et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507, 513–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi, Y.S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soh, S.Y. et al. NKT cell hyporesponsiveness leads to unrestrained accumulation of marginal zone B cells in hypercholesterolemic apolipoprotein E–deficient mice. J. Immunol. 197, 3894–3904 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Rosser, E.C. et al. Regulatory B cells are induced by gut microbiota–driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Bankovich, A.J., Shiow, L.R. & Cyster, J.G. CD69 suppresses sphingosine 1–phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 285, 22328–22337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Gotsman, I. et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Invest. 117, 2974–2982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bu, D.X. et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 1100–1107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan, A.R. et al. PD-L1hi B cells are critical regulators of humoral immunity. Nat. Commun. 6, 5997 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sage, P.T., Francisco, L.M., Carman, C.V. & Sharpe, A.H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hartman, M.G. et al. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol. Cell. Biol. 24, 5721–5732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Binder, C.J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Chou, M.Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA–seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Petrunkina, E. Perez, C. Bowman, S. McCallum, J. Markovic Djuric and N. Savinykh in the Phenotyping Hub of the Department of Medicine (University of Cambridge) for their help in flow cytometry and sorting and M. Ozsvar Kozma (Medical University of Vienna) for help in antibody measurements. We also acknowledge M. Ma for support during library preparation for RNA–seq. This work was supported by BHF grant no. PG/15/76/31756, BHF grant no. PG/13/73/30466, ERC grant no. 2891164 and EC FP7 VIA grant no. HEALTH-F4-2013-603131 to Z.M. and by SAF2013-45543-R from the Spanish Ministry of Economy and Competitiveness (MINECO) to J.L.d.l.P. M.N. was first supported by a Sara Borrell grant (CD09/00452) from the Instituto Nacional de Salud Carlos III (Spain) and then by a 2-year BHF Project Grant. M.N. has also received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608765. We acknowledge measurements of lipids in blood by K. Burling. The Wellcome Trust supported the Cambridge Mouse Biochemistry Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

M.N. and Z.M. conceived the study; M.N. designed, performed and analyzed the results of experiments; A.P.S. performed experiments and provided advice on design and discussion; Y.L. performed time-lapse microscopy experiments; S.N., J.R. and D.M. performed experiments related to the atherosclerosis studies; L.M., A.F., L.K. and N.F. helped significantly with flow cytometry, animal work and immunohistochemistry, respectively; S.W. provided and analyzed human spleens crucial to this study; D.T. performed and interpreted blood antibody measurements; R.S., M.K. and J.L.d.l.P. developed and provided mice and cells crucial for the paper; B.Y.H.L. performed bioinformatic analyses on the RNA–seq data; G.S.H.Y. supervised and interpreted the RNA–seq analyses; C.J.B. advised on antibody measurement and contributed significantly to the intellectual content of the paper; Z.M. supervised the entire study; and M.N. and Z.M. prepared the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Ziad Mallat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1,2. (PDF 8143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nus, M., Sage, A., Lu, Y. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat Med 23, 601–610 (2017). https://doi.org/10.1038/nm.4315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing