Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1

Abstract

Damage-associated molecular patterns (DAMPs) trigger sterile inflammation after tissue injury, but the mechanisms underlying the resolution of inflammation remain unclear. In this study, we demonstrate that common DAMPs, such as high-mobility-group box 1 (HMGB1), peroxiredoxins (PRXs), and S100A8 and S100A9, were internalized through the class A scavenger receptors MSR1 and MARCO in vitro. In ischemic murine brain, DAMP internalization was largely mediated by MSR1. An elevation of MSR1 levels in infiltrating myeloid cells observed 3 d after experimental stroke was dependent on the transcription factor Mafb. Combined deficiency for Msr1 and Marco, or for Mafb alone, in infiltrating myeloid cells caused impaired clearance of DAMPs, more severe inflammation, and exacerbated neuronal injury in a murine model of ischemic stroke. The retinoic acid receptor (RAR) agonist Am80 increased the expression of Mafb, thereby enhancing MSR1 expression. Am80 exhibited therapeutic efficacy when administered, even at 24 h after the onset of experimental stroke. Our findings uncover cellular mechanisms contributing to DAMP clearance in resolution of the sterile inflammation triggered by tissue injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRXs, HMGB1, and S100A8/A9 are internalized by infiltrating mononuclear phagocytes.
Figure 2: Identification of Msr1 and Mafb as essential genes for the internalization of DAMPs.
Figure 3: Mafb-dependent enhanced MSR1 expression and characteristics of the MSR1hi myeloid fraction in ischemic brain.
Figure 4: Impaired clearance of DAMPs due to Msr1/Marco deficiency exacerbates the pathology of ischemic stroke.
Figure 5: The dominant roles of MSR1–MARCO and MAFB in infiltrating myeloid cells for the pathologies of ischemic stroke.
Figure 6: Therapeutic effect of Am80 through its promotion of MAFB-dependent enhanced MSR1 expression.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Moskowitz, M.A., Lo, E.H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lo, E.H. Degeneration and repair in central nervous system disease. Nat. Med. 16, 1205–1209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chamorro, Á., Dirnagl, U., Urra, X. & Planas, A.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15, 869–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 8, 333ra50 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dalli, J., Chiang, N. & Serhan, C.N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21, 1071–1075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buckley, C.D., Gilroy, D.W., Serhan, C.N., Stockinger, B. & Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Dirnagl, U. & Endres, M. Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45, 1510–1518 (2014).

    Article  PubMed  Google Scholar 

  9. Iadecola, C. & Anrather, J. Stroke research at a crossroad: asking the brain for directions. Nat. Neurosci. 14, 1363–1368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, G.Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Hayakawa, K., Qiu, J. & Lo, E.H. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann. NY Acad. Sci. 1207, 50–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, J. et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J. Cereb. Blood Flow Metab. 28, 927–938 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Okuma, Y. et al. Anti–high mobility group box-1 antibody therapy for traumatic brain injury. Ann. Neurol. 72, 373–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, J. et al. Anti–high mobility group box-1 monoclonal antibody protects the blood–brain barrier from ischemia-induced disruption in rats. Stroke 42, 1420–1428 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler, G. et al. Mrp-8 and -14 mediate CNS injury in focal cerebral ischemia. Biochim. Biophys. Acta 1792, 1198–1204 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Loser, K. et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med. 16, 713–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Klichko, V.I., Orr, W.C. & Radyuk, S.N. The role of peroxiredoxin 4 in inflammatory response and aging. Biochim. Biophys. Acta 1862, 265–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Salzano, S. et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA 111, 12157–12162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riddell, J.R. et al. Peroxiredoxin 1 controls prostate cancer growth through Toll-like receptor 4–dependent regulation of tumor vasculature. Cancer Res. 71, 1637–1646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Riddell, J.R., Wang, X.Y., Minderman, H. & Gollnick, S.O. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022–1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Shichita, T. et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911–917 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kuang, X. et al. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic. Biol. Med. 71, 165–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Uzawa, A. et al. Increased serum peroxiredoxin 5 levels in myasthenia gravis. J. Neuroimmunol. 287, 16–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Rashidian, J. et al. Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J. Neurosci. 29, 12497–12505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dayon, L. et al. Brain extracellular fluid protein changes in acute stroke patients. J. Proteome Res. 10, 1043–1051 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ito, M. et al. Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun. 6, 7360 (2015).

    Article  PubMed  Google Scholar 

  32. Benakis, C., Garcia-Bonilla, L., Iadecola, C. & Anrather, J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front. Cell. Neurosci. 8, 461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Gliem, M. et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 71, 743–752 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Schlegel, J., Neff, F. & Piontek, G. Serial induction of mutations by ethylnitrosourea in PC12 cells: a new model for a phenotypical characterization of the neurotoxic response to 6-hydroxydopamine. J. Neurosci. Methods 137, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y.C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li, S. et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat. Neurosci. 13, 1496–1504 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Wieghofer, P., Knobeloch, K.P. & Prinz, M. Genetic targeting of microglia. Glia 63, 1–22 (2015).

    Article  PubMed  Google Scholar 

  41. Aziz, A., Soucie, E., Sarrazin, S. & Sieweke, M.H. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 326, 867–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Soucie, E.L. et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aziz, A. et al. Development of macrophages with altered actin organization in the absence of MafB. Mol. Cell. Biol. 26, 6808–6818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hamada, M. et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat. Commun. 5, 3147 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Matsushita, H. et al. A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab. 31, 222–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Katsuki, H. et al. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J. Neurochem. 110, 707–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Klemann, C. et al. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am. J. Pathol. 174, 2234–2245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takeuchi, H. et al. Retinoid X receptor agonists modulate Foxp3+ regulatory T cell and Th17 cell differentiation with differential dependence on retinoic acid receptor activation. J. Immunol. 191, 3725–3733 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Desestret, V. et al. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS One 8, e67063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063–3070 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Lane, M.A. & Bailey, S.J. Role of retinoid signalling in the adult brain. Prog. Neurobiol. 75, 275–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sarrazin, S. et al. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138, 300–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki, H. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y. et al. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J. Immunol. 175, 8173–8180 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Muto, G. et al. TRAF6 is essential for maintenance of regulatory T cells that suppress Th2 type autoimmunity. PLoS One 8, e74639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao, H. et al. Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats. Stroke 34, 2716–2721 (2003).

    Article  PubMed  Google Scholar 

  58. Bederson, J.B. et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Balkaya, M., Kröber, J.M., Rex, A. & Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J. Cereb. Blood Flow Metab. 33, 330–338 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Shiino, A. Ino, and M. Asakawa for their technical assistance and H. Yao for his technical advice on the MCAO model. Msr1/Marco-deficient mice were kindly provided by K. Tryggvason (Duke–NUS Medical School). This work was supported by PRESTO from the Japan Science and Technology Agency (T.S.), a Grant-in-Aid for Scientific Research on Innovative Areas (Homeostatic regulation by various types of cell death) (15H01387) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (T.S.), JSPS KAKENHI Grants-in-Aid for Young Scientists (B) (26870571) (T.S.) and (S) (25221305) (A.Y.), Advanced Research & Development Programs for Medical Innovation (AMED-CREST) (A.Y.), a Toray Science and Technology Grant (T.S.), the Takeda Science Foundation (T.S.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (T.S.), a Japan Heart Foundation Research Grant (T.S.), the SENSHIN Medical Research Foundation (A.Y.), Keio Gijuku Academic Developmental Funds (A.Y.), and Open Research for Young Academics and Specialists from MEXT (A.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.S. designed and performed the experiments, analyzed the data, and wrote the manuscript; Y.N., M.I., and K.K. performed the experiments; R.M. and H.O. provided technical advice; R.K. and S.T. provided Lysm-Cre; Mafbflox/flox mice; T.K. provided Msr1/Marco double-knockout mice; and A.Y. directed the entire study, designed the experiments, and wrote the manuscript.

Corresponding authors

Correspondence to Takashi Shichita or Akihiko Yoshimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 5614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shichita, T., Ito, M., Morita, R. et al. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med 23, 723–732 (2017). https://doi.org/10.1038/nm.4312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing