Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle

Abstract

Exercise has numerous health-promoting effects in humans1; however, individual responsiveness to exercise with regard to endurance or metabolic health differs markedly2,3,4. This 'exercise resistance' is considered to be congenital, with no evident acquired causative factors. Here we show that the anti-oxidative hepatokine selenoprotein P (SeP)5,6,7 causes exercise resistance through its muscle receptor low-density lipoprotein receptor–related protein 1 (LRP1)8. SeP-deficient mice showed a 'super-endurance' phenotype after exercise training, as well as enhanced reactive oxygen species (ROS) production, AMP-activated protein kinase (AMPK) phosphorylation9 and peroxisome proliferative activated receptor γ coactivator (Ppargc)-1α (also known as PGC-1α; encoded by Ppargc1a)10 expression in skeletal muscle. Supplementation with the anti-oxidant N-acetylcysteine (NAC) reduced ROS production and the endurance capacity in SeP-deficient mice. SeP treatment impaired hydrogen-peroxide-induced adaptations through LRP1 in cultured myotubes and suppressed exercise-induced AMPK phosphorylation and Ppargc1a gene expression in mouse skeletal muscle—effects which were blunted in mice with a muscle-specific LRP1 deficiency. Furthermore, we found that increased amounts of circulating SeP predicted the ineffectiveness of training on endurance capacity in humans. Our study suggests that inhibitors of the SeP–LRP1 axis may function as exercise-enhancing drugs to treat diseases associated with a sedentary lifestyle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deficiency of SeP enhances responsiveness to exercise training in mice.
Figure 2: SeP suppresses ROS-induced AMPK phosphorylation and Ppargc1a gene expression in cultured myotubes through LRP1.
Figure 3: Deficiency of LRP1 abolishes SeP-induced suppression of AMPK phosphorylation during exercise and enhances responsiveness to exercise training in mice.
Figure 4: SeP functions in human muscle cells and predicts ineffectiveness of training in human subjects.

Similar content being viewed by others

References

  1. Bishop-Bailey, D. Mechanisms governing the health and performance benefits of exercise. Br. J. Pharmacol. 170, 1153–1166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouchard, C., Rankinen, T. & Timmons, J.A. Genomics and genetics in the biology of adaptation to exercise. Compr. Physiol. 1, 1603–1648 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Bouchard, C. et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J. Appl. Physiol. 87, 1003–1008 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Stephens, N.A. & Sparks, L.M. Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J. Clin. Endocrinol. Metab. 100, 43–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Misu, H. et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 12, 483–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Saito, Y. & Takahashi, K. Characterization of selenoprotein P as a selenium supply protein. Eur. J. Biochem. 269, 5746–5751 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Burk, R.F. & Hill, K.E. Selenoprotein P expression, functions and roles in mammals. Biochim. Biophys. Acta 1790, 1441–1447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lillis, A.P., Van Duyn, L.B., Murphy-Ullrich, J.E. & Strickland, D.K. LDL-receptor-related protein 1: unique tissue-specific functions revealed by selective gene-knockout studies. Physiol. Rev. 88, 887–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Narkar, V.A. et al. AMPK and PPAR-δ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Handschin, C. & Spiegelman, B.M. The role of exercise and PGC1-α in inflammation and chronic disease. Nature 454, 463–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niess, A.M. & Simon, P. Response and adaptation of skeletal muscle to exercise—the role of reactive oxygen species. Front. Biosci. 12, 4826–4838 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Cardaci, S., Filomeni, G. & Ciriolo, M.R. Redox implications of AMPK-mediated signal transduction beyond energetic clues. J. Cell Sci. 125, 2115–2125 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Kang, C., O'Moore, K.M., Dickman, J.R. & Ji, L.L. Exercise activation of muscle peroxisome proliferator-activated receptor gamma coactivator 1α signaling is redox sensitive. Free Radic. Biol. Med. 47, 1394–1400 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 106, 8665–8670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez-Cabrera, M.C. et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 87, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Hill, K.E. et al. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem. 287, 40414–40424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, S.J. et al. Serum selenoprotein P levels in patients with type 2 diabetes and pre-diabetes: implications for insulin resistance, inflammation and atherosclerosis. J. Clin. Endocrinol. Metab. 96, E1325–E1329 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Arteel, G.E. et al. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol. Chem. 379, 1201–1205 (1998).

    CAS  PubMed  Google Scholar 

  19. Olson, G.E., Winfrey, V.P., Nagdas, S.K., Hill, K.E. & Burk, R.F. Apolipoprotein E receptor 2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem. 282, 12290–12297 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Olson, G.E., Winfrey, V.P., Hill, K.E. & Burk, R.F. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem. 283, 6854–6860 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Egan, B. & Zierath, J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Osler, M.E. et al. Changes in gene expression in responders and nonresponders to a low-intensity walking intervention. Diabetes Care 38, 1154–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. De Filippis, E. et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am. J. Physiol. Endocrinol. Metab. 294, E607–E614 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kacerovsky-Bielesz, G. et al. Short-term exercise training does not stimulate skeletal muscle ATP synthesis in relatives of humans with type 2 diabetes. Diabetes 58, 1333–1341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barrès, R. et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405–411 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Barrès, R. & Zierath, J.R. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol. 12, 441–451 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Rasmussen, L.B. et al. Serum selenium and selenoprotein P status in adult Danes—8-year follow up. J. Trace Elem. Med. Biol. 23, 265–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Yao, H.D. et al. Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim. Biophys. Acta 1830, 3112–3120 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Jeon, Y.H., Park, Y.H., Lee, J.H., Hong, J.H. & Kim, I.Y. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein. Biochim. Biophys. Acta 1843, 1356–1364 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kurokawa, S., Hill, K.E., McDonald, W.H. & Burk, R.F. Long-isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin-binding properties and apolipoprotein E receptor 2 (ApoER2). J. Biol. Chem. 287, 28717–28726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burk, R.F. et al. Selenoprotein P and apolipoprotein E receptor 2 interact at the blood–brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 28, 3579–3588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, K.E., Zhou, J., McMahan, W.J., Motley, A.K. & Burk, R.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr. 134, 157–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Valentine, W.M., Abel, T.W., Hill, K.E., Austin, L.M. & Burk, R.F. Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J. Neuropathol. Exp. Neurol. 67, 68–77 (2008).

    Article  PubMed  Google Scholar 

  34. Hill, K.E. et al. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 278, 13640–13646 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Caito, S.W. et al. Progression of neurodegeneration and morphologic changes in the brains of juvenile mice with selenoprotein P deleted. Brain Res. 1398, 1–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cartee, G.D., Hepple, R.T., Bamman, M.M. & Zierath, J.R. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 23, 1034–1047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garber, C.E. et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359 (2011).

    Article  PubMed  Google Scholar 

  38. Ristow, M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat. Med. 20, 709–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Ristow, M. & Schmeisser, K. Mitohormesis: promoting health and life span by increased levels of reactive oxygen species (ROS). Dose Response 12, 288–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Myers, J. et al. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 346, 793–801 (2002).

    Article  PubMed  Google Scholar 

  41. Rohlmann, A., Gotthardt, M., Willnow, T.E., Hammer, R.E. & Herz, J. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat. Biotechnol. 14, 1562–1565 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Brüning, J.C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  PubMed  Google Scholar 

  43. Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α–ATF-6α complex. Cell Metab. 13, 160–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kubota, N. et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J. Biol. Chem. 281, 8748–8755 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Lan, F. et al. LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance. Diabetes 63, 1649–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Kitajima, S. et al. Relapse and its remission in Japanese patients with idiopathic membranous nephropathy. Clin. Exp. Nephrol. 19, 278–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, H. et al. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 303, E1419–E1427 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chida, J. et al. Blood lactate/ATP ratio as an alarm index and real-time biomarker in critical illness. PLoS One 8, e60561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saito, Y., Watanabe, Y., Saito, E., Honjoh, T. & Takahashi, K. Production and application of monoclonal antibodies to human selenoprotein P. J. Health Sci. 47, 346–352 (2001).

    Article  CAS  Google Scholar 

  50. Bamman, M.M. et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. 84, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Saito, Y. et al. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein P. J. Biol. Chem. 274, 2866–2871 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Hill, K.E., Chittum, H.S., Lyons, P.R., Boeglin, M.E. & Burk, R.F. Effect of selenium on selenoprotein P expression in cultured liver cells. Biochim. Biophys. Acta 1313, 29–34 (1996).

    Article  PubMed  Google Scholar 

  53. Saito, Y. & Takahashi, K. P selenoprotein: its structure and functions. J. Health Sci. 46, 409–413 (2000).

    Article  CAS  Google Scholar 

  54. Robb, R.J., Greene, W.C. & Rusk, C.M. Low- and high-affinity cellular receptors for interleukin 2. Implications for the level of Tac antigen. J. Exp. Med. 160, 1126–1146 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Yoshizawa, M. et al. Additive beneficial effects of lactotripeptides and aerobic exercise on arterial compliance in postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 297, H1899–H1903 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Akazawa, N. et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 32, 795–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka, M. et al. Development of a sol particle homogeneous immunoassay for measuring full-length selenoprotein P in human serum. J. Clin. Lab. Anal. 30, 114–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Spitzer, M. et al. BoxPlotR: a web tool for generation of box plots. Nat. Methods 11, 121–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Furuta, M. Wakabayashi, M. Kawamura, Y. Yamashita and A. Hayashi for technical assistance and H. Asakura for advice on statistical analysis. We also thank K.E. Hill and R.F. Burk (Vanderbilt University School of Medicine) for the Sepp1-knockout mice and C.R. Kahn (Joslin Diabetes Center) for the MCK-Cre transgenic mice. This work was supported by JSPS KAKENHI grants 25461334 (H.M.), 25292078 (Y.S.), 16K09740 (H.M.), 26461329 (T.T.) and 26253046 (S. Kaneko), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (H.M.), the Takeda Science Foundation (H.M.), the MEXT-Supported Program for the Strategic Research Foundation at Private Universities in Japan for years 2012–2016 (N.N.) and JST Adaptable and Seamless Technology Transfer Program (A-STEP) grants AS2311400F (H.M., Y.S. and M.T.) and 15im0302407 (H.M., Y.S. and M.T.).

Author information

Authors and Affiliations

Authors

Contributions

H.M. and T.T. conceived the study and designed the experiments; H.T., A.K., K. Ishii, K.C., T.K., N.T., F.L., Y.T., M.T., S. Kato, Y.Y., K. Iwayama, N.A. and H.M. conducted the experiments; Y.S., Y.M., M.H., N.M., K. Tokuyama, S. Maeda, K. Takekoshi, S. Matsugo, N.N. and S. Kaneko analyzed the data and provided the discussion; and H.M. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to Hirofumi Misu or Toshinari Takamura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–5 (PDF 2982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misu, H., Takayama, H., Saito, Y. et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 23, 508–516 (2017). https://doi.org/10.1038/nm.4295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing