Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes

Abstract

Identification of epitopes that are recognized by diabetogenic T cells and cause selective beta cell destruction in type 1 diabetes (T1D) has focused on peptides originating from native beta cell proteins. Translational errors represent a major potential source of antigenic peptides to which central immune tolerance is lacking1,2. Here, we describe an alternative open reading frame within human insulin mRNA encoding a highly immunogenic polypeptide that is targeted by T cells in T1D patients. We show that cytotoxic T cells directed against the N-terminal peptide of this nonconventional product are present in the circulation of individuals diagnosed with T1D, and we provide direct evidence that such CD8+ T cells are capable of killing human beta cells and thereby may be diabetogenic. This study reveals a new source of nonconventional polypeptides that act as self-epitopes in clinical autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of open reading frames (ORFs) found in the human insulin mRNA.
Figure 2: The human insulin mRNA harbors an alternative open reading frame.
Figure 3: Immunogenicity of insulin-derived, nonconventional polypeptide.
Figure 4: INS-DRIP1–9-specific CTLs kill human beta cells in vitro.

Similar content being viewed by others

References

  1. Kracht, M.J., Zaldumbide, A. & Roep, B.O. Neoantigens and microenvironment in type 1 diabetes: lessons from antitumor immunity. Trends Endocrinol. Metab. 27, 353–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Antón, L.C. & Yewdell, J.W. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95, 551–562 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kronenberg, D. et al. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill β-cells. Diabetes 61, 1752–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinkse, G.G. et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc. Natl. Acad. Sci. USA 102, 18425–18430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skowera, A. et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118, 3390–3402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Toma, A. et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 102, 10581–10586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eizirik, D.L., Colli, M.L. & Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. O'Sullivan-Murphy, B. & Urano, F. ER stress as a trigger for β-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 61, 780–781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eizirik, D.L. et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Jong, V.M. et al. Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun. 14, 58–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. van Lummel, M., Zaldumbide, A. & Roep, B.O. Changing faces, unmasking the beta-cell: post-translational modification of antigens in type 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 20, 299–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. van Lummel, M. et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 63, 237–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. McLaughlin, R.J. et al. Human islets and dendritic cells generate post-translationally modified islet autoantigens. Clin. Exp. Immunol. 185, 133–140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, T., Weems, M. & Wilke, C.O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berglund, P., Finzi, D., Bennink, J.R. & Yewdell, J.W. Viral alteration of cellular translational machinery increases defective ribosomal products. J. Virol. 81, 7220–7229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qian, S.B., Princiotta, M.F., Bennink, J.R. & Yewdell, J.W. Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control. J. Biol. Chem. 281, 392–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Yewdell, J.W. Amsterdamming DRiPs. Mol. Immunol. 55, 110–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Starck, S.R. et al. A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS One 3, e3460 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Starck, S.R. & Shastri, N. Non-conventional sources of peptides presented by MHC class I. Cell. Mol. Life Sci. 68, 1471–1479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bratanova-Tochkova, T.K. et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51 (Suppl. 1), S83–S90 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Rorsman, P. & Renström, E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 46, 1029–1045 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kent, S.C. et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435, 224–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, L., Nakayama, M. & Eisenbarth, G.S. Insulin as an autoantigen in NOD/human diabetes. Curr. Opin. Immunol. 20, 111–118 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Abreu, J.R. et al. CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin. Exp. Immunol. 170, 57–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dotta, F. et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 104, 5115–5120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell-Thompson, M., Wasserfall, C., Montgomery, E.L., Atkinson, M.A. & Kaddis, J.S. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. J. Am. Med. Assoc. 308, 2337–2339 (2012).

    Article  CAS  Google Scholar 

  30. Coppieters, K.T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oslowski, C.M. & Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howson, J.M., Walker, N.M., Smyth, D.J. & Todd, J.A. Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun. 10 (Suppl. 1), S74–S84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fennessy, M. et al. A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia 37, 937–944 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Robles, D.T. et al. Millennium award recipient contribution. Identification of children with early onset and high incidence of anti-islet autoantibodies. Clin. Immunol. 102, 217–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Velthuis, J.H. et al. Simultaneous detection of circulating autoreactive CD8+ T cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59, 1721–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaldumbide, A. et al. Genetically engineered human islets protected from CD8-mediated autoimmune destruction in vivo. Mol. Ther. 21, 1592–1601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vattem, K.M. & Wek, R.C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watatani, Y. et al. Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J. Biol. Chem. 283, 2543–2553 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev. 29, 317–333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bengtson, M.H. & Joazeiro, C.A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pedersen, A.G. & Nielsen, H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 226–233 (1997).

    CAS  PubMed  Google Scholar 

  45. Buus, S. et al. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue Antigens 62, 378–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Franken, K.L. et al. Purification of his-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr. Purif. 18, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. van Lummel, M. et al. Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire. J. Biol. Chem. 287, 9514–9524 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Stepniak, D. et al. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J. Immunol. 180, 3268–3278 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Unger, W.W., Laban, S., Kleijwegt, F.S., van der Slik, A.R. & Roep, B.O. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur. J. Immunol. 39, 3147–3159 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. van Lummel, M. et al. Discovery of a selective islet peptidome presented by the highest-risk HLA-DQ8trans Molecule. Diabetes 65, 732–741 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. van Lummel, M. et al. Dendritic cells guide islet autoimmunity through a restricted and uniquely processed peptidome presented by high-risk HLA-DR. J. Immunol. 196, 3253–3263 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Schloot, N.C., Willemen, S., Duinkerken, G., de Vries, R.R. & Roep, B.O. Cloned T cells from a recent onset IDDM patient reactive with insulin B-chain. J. Autoimmun. 11, 169–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Carlotti, F. et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol. Ther. 9, 209–217 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Aanstoot (Diabeter), L. Mearin (Department of Pediatrics, LUMC), L. Wicker and J. Todd (Cambridge University, UK) for providing patient blood samples; M. Peakman (King's College, London, UK) for kindly sharing the PPI-specific CD8+ T cell clone; S.J. Cramer, M.J.W.E. Rabelink, T.J.M. Pool, K. Franken and A.H. de Ru for expert technical support; and J.R.F. Abreu for qDot analysis. This work is supported by the Dutch Diabetes Research Foundation, the DON Foundation and the Juvenile Diabetes Research foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.O.R., R.C.H. and A.Z. conceived and directed the project and wrote the manuscript. M.J.L.K. performed the key experiments and analyzed the data. P.A.v.V. performed mass spectrometry experiments. A.M.J. and S.L. cloned DRiP1–9-specific CTLs. M.v.L., T.N. and A.R.v.d.S. selected patient samples, performed ELISPOT assay and characterized CD8+ clones. F.C. and E.J.P.d.K. provided human islets.

Corresponding author

Correspondence to Bart O Roep.

Ethics declarations

Competing interests

Leiden University Medical Center has filed international patent applications (EP16152400.4 and EP16154295.6) related to the insulin DRiP polypeptide (inventors B.O.R. and A.Z.).

Supplementary information

Supplementary Figures, Tables and Materials

Supplementary Figures 1–5, Supplementary Tables 1–3 and Materials (PDF 4776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kracht, M., van Lummel, M., Nikolic, T. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med 23, 501–507 (2017). https://doi.org/10.1038/nm.4289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing