Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice

Abstract

African Americans have a heightened risk of developing chronic and end-stage kidney disease, an association that is largely attributed to two common genetic variants, termed G1 and G2, in the APOL1 gene. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking because the APOL1 gene is present in only some primates and humans; thus it has been challenging to demonstrate experimental proof of causality of these risk alleles for renal disease. Here we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk-conferring alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not of the G0 allele, develop functional (albuminuria and azotemia), structural (foot-process effacement and glomerulosclerosis) and molecular (gene-expression) changes that closely resemble human kidney disease. Disease development was cell-type specific and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the risk-variant APOL1 alleles interferes with endosomal trafficking and blocks autophagic flux, which ultimately leads to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first demonstration that the expression of APOL1 risk alleles is causal for altered podocyte function and glomerular disease in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a mouse model with cell-type-specific inducible expression of APOL1 variants.
Figure 2: APOL1-risk-variant-induced phenotype is cell-type- and dose-dependent and likely reversible.
Figure 3: APOL1-risk-allele cells show increased accumulation of intracellular vesicles, mainly late endosomes/autophagosomes.
Figure 4: Risk variants of APOL1 obstruct autophagy flux.
Figure 5: APOL1 risk variants induce inflammatory cell death (pyroptosis) in cells.
Figure 6: Mice with podocyte-specific APOL1 risk-allele expression show increased podocyte loss, autophagy block and increased inflammatory cell death.

Similar content being viewed by others

Jeffrey B. Kopp, Hans-Joachim Anders, … Paola Romagnani

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. USRDS. US Renal. Data Syst. (2015).

  2. Lipworth, L. et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One 7, e48407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freedman, B.I. et al. Differential effects of MYH9 and APOL1 risk variants on FRMD3 Association with Diabetic ESRD in African Americans. PLoS Genet. 7, e1002150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foster, M.C. et al. APOL1 variants associate with increased risk of CKD among African Americans. J. Am. Soc. Nephrol. 24, 1484–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedman, D.J. & Pollak, M.R. Genetics of kidney failure and the evolving story of APOL1. J. Clin. Invest. 121, 3367–3374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson, R. et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl. Acad. Sci. USA 111, E2130–E2139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lecordier, L. et al. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus. Mol. Microbiol. 97, 397–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Bruggeman, L.A. et al. APOL1-G0 or APOL1-G2 transgenic models develop preeclampsia but not kidney disease. J. Am. Soc. Nephrol. 27, 3600–3610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madhavan, S.M. et al. APOL1 localization in normal kidney and nondiabetic kidney disease. J. Am. Soc. Nephrol. 22, 2119–2128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, H. et al. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. J. Clin. Invest. 126, 1067–1078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Larsen, C.P. et al. Histopathologic findings associated with APOL1 risk variants in chronic kidney disease. Mod. Pathol. 28, 95–102 (2015).

    Article  PubMed  Google Scholar 

  14. Kopp, J.B. et al. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J. Am. Soc. Nephrol. 26, 1443–1448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ng, D.K. et al. APOL1-associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw061 (2016).

  16. Jotwani, V. et al. APOL1 genotype and glomerular and tubular kidney injury in women with HIV. Am. J. Kidney Dis. 65, 889–898 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tin, A. et al. Patterns of kidney function decline associated with APOL1 genotypes: results from AASK. Clin. J. Am. Soc. Nephrol. 11, 1353–1359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ledo, N. et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26, 692–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Sampson, M.G. et al. Integrative genomics identifies novel associations with APOL1 risk genotypes in black NEPTUNE subjects. J. Am. Soc. Nephrol. 27, 814–823 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhaorigetu, S., Wan, G., Kaini, R., Jiang, Z. & Hu, C.A. ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4, 1079–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Furuta, N. & Amano, A. SNARE mediates autophagosome–lysosome fusion. Journal of Oral Biosciences 54, 83–85 (2012).

    Article  CAS  Google Scholar 

  23. Müller-Deile, J. & Schiffer, M. Podocyte directed therapy of nephrotic syndrome-can we bring the inside out? Pediatr. Nephrol. 31, 393–405 (2016).

    Article  PubMed  Google Scholar 

  24. Tao, J., Polumbo, C., Reidy, K., Sweetwyne, M. & Susztak, K. A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis. Kidney Int. 85, 972–980 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Byrne, B.G., Dubuisson, J.F., Joshi, A.D., Persson, J.J. & Swanson, M.S. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4, e00620–e12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shahzad, K. et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2270–2275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoki, K. mTOR signaling in autophagy regulation in the kidney. Semin. Nephrol. 34, 2–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Nichols, B. et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 87, 332–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kasembeli, A.N. et al. APOL1 risk variants are strongly associated with HIV-associated nephropathy in Black South Africans. J. Am. Soc. Nephrol. 26, 2882–2890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomson, R. & Finkelstein, A. Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis. Proc. Natl. Acad. Sci. USA 112, 2894–2899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheng, D. et al. Biogenesis and cytotoxicity of APOL1 renal risk variant proteins in hepatocytes and hepatoma cells. J. Lipid Res. 56, 1583–1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galindo-Moreno, J. et al. Apolipoprotein L2 contains a BH3-like domain but it does not behave as a BH3-only protein. Cell Death Dis. 5, e1275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heneghan, J.F. et al. BH3 domain-independent apolipoprotein L1 toxicity rescued by BCL2 prosurvival proteins. Am. J. Physiol. Cell Physiol. 309, C332–C347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hartleben, B., Wanner, N. & Huber, T.B. Autophagy in glomerular health and disease. Semin. Nephrol. 34, 42–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Tagawa, A. et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65, 755–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto-Nonaka, K. et al. Cathepsin D in podocytes is important in the pathogenesis of proteinuria and CKD. J. Am. Soc. Nephrol. 27, 2685–2700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 6, 232–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Turner, C.M., Arulkumaran, N., Singer, M., Unwin, R.J. & Tam, F.W. Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol. 15, 21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, P. et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    CAS  PubMed  Google Scholar 

  43. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haque, S. et al. HIV promotes NLRP3 inflammasome complex activation in murine HIV-associated nephropathy. Am. J. Pathol. 186, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, X., Suh, J.H., Go, G. & Miner, J.H. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J. Am. Soc. Nephrol. 25, 687–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sakairi, T. et al. Conditionally immortalized human podocyte cell lines established from urine. Am. J. Physiol. Renal Physiol. 298, F557–F567 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest. 122, 4401–4411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work performed in the Susztak lab is supported by US National Institutes of Health (NIH) grants DK105821, DK087635, DK076077 and DP3 DK108220. The human kidney RNA-sequencing project was performed in collaboration with Boehringer Ingelheim. J. Bi-Karchin was supported by 2T32DK007006. J.B. Kopp. and P.D.D. were supported by the Intramural Research Program, NIDDK, NIH. J.H.M. was supported by R01DK078314 and R01DK058366; T.R. by GM093290 and NS055159; and A.M.C. by AG054108 (NIH). M.A.S. was supported by Kids Kidney Research, and the Bristol Nutrition NIHR-BRU. We would also like to thank the Electron Microscopy Resource Laboratory (EMRL) core facility at the University of Pennsylvania for technical support.

Author information

Authors and Affiliations

Authors

Contributions

P.B. and J.B.-K. designed and performed the experiments, and wrote and revised the manuscript. A.S.D.P. performed initial animal characterization and in vitro studies (TEM and IF). C.Q. analyzed RNA-sequencing data. P.D.D. and J.B.K. helped with the discussion and generated mCherry-APOL1-G0/G1/G2 stable cell lines (not used in the paper). I.S. generated TRE-GFP/APOL1-G1 stable HEK293 cell line. C.M.B.-K. and S.S.P. contributed to the human data presented in the paper. J.H.M. provided the Nphs1-transgenic mice. C.-A.A.H. provided the original APOL1 constructs. T.R. made the bicistronic plasmids containing TRE-GFP/APOL1-G0/G1/G2. K.I. and S.I. provided help with spinning disk confocal microscopy. M.A.S. provided human podocytes. M.B.P. performed the pathological characterization. A.M.C. helped with autophagy studies. K.S. designed and supervised the study and wrote and revised the manuscript.

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Competing interests

The Susztak lab is supported in part by Boehringer Ingelheim for a study related to the human data presented in the paper.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–9 and Supplementary Tables 1–4 (PDF 11328 kb)

41591_2017_BFnm4287_MOESM2_ESM.avi

APOL1 is colocalized to the late endosome. Spinning disc confocal microscopy movie of GFP-APOL1(green) and RFPRab7 (late endosome, red). Scale bar: 5μm. (AVI 3516 kb)

41591_2017_BFnm4287_MOESM3_ESM.avi

Risk allele APOL1 shows increased accumulation of recycling endosome. Spinning disc confocal microscopy movies of GFP-APOL1-G0 (AVI 3516 kb)

41591_2017_BFnm4287_MOESM4_ESM.avi

Risk allele APOL1 shows increased accumulation of recycling endosome. Spinning disc confocal microscopy movies of GFP-APOL1-G2 (green) and RFPRab11 (recycling endosome, red), Scale bar: 5μm. (AVI 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckerman, P., Bi-Karchin, J., Park, A. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 23, 429–438 (2017). https://doi.org/10.1038/nm.4287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing