Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B

Abstract

Hepatitis B virus (HBV)-specific CD8 T cells are functionally exhausted in chronic hepatitis B infection, and this condition can be corrected only partially through the modulation of inhibitory pathways, which suggests that a more complex molecular interplay underlies T cell exhaustion. To gain broader insight into this process and identify additional targets for the restoration of T cell function, we compared the transcriptome profiles of HBV-specific CD8 T cells from patients with acute and chronic disease with those of HBV-specific CD8 T cells from patients able to resolve HBV infection spontaneously and influenza (FLU)-specific CD8 T cells from healthy participants. The results indicate that exhausted HBV-specific CD8 T cells are markedly impaired at multiple levels and show substantial downregulation of various cellular processes centered on extensive mitochondrial alterations. A notable improvement of mitochondrial and antiviral CD8 functions was elicited by mitochondrion-targeted antioxidants, which suggests a central role for reactive oxygen species (ROS) in T cell exhaustion. Thus, mitochondria represent promising targets for novel reconstitution therapies to treat chronic hepatitis B infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gene-expression profiling of HBV-specific CD8 T cells from the acute, chronic and resolution phases of hepatitis B infection.
Figure 2: Comparison of patients with chronic and resolved infections by GSEA.
Figure 3: Mitochondrial dysfunction in patients with chronic HBV infection.
Figure 4: Correction of mitochondrial dysfunction by MT antioxidants.
Figure 5: Functional restoration of exhausted HBV-specific T cells by MT antioxidants.
Figure 6: Specificity of the MT-antioxidant effect on cytokine production.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    European Association For The Study Of The Liver. EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J. Hepatol. 57, 167–185 (2012).

  2. 2

    Bertoletti, A. & Ferrari, C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61, 1754–1764 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 5, 215–229 (2005).

    CAS  Google Scholar 

  4. 4

    Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  Google Scholar 

  5. 5

    Odorizzi, P.M. & Wherry, E.J. Inhibitory receptors on lymphocytes: insights from infections. J. Immunol. 188, 2957–2965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Alatrakchi, N. & Koziel, M. Regulatory T cells and viral liver disease. J. Viral Hepat. 16, 223–229 (2009).

    Article  PubMed  Google Scholar 

  7. 7

    Chen, J.H. et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ng, C.T. & Oldstone, M.B. IL-10: achieving balance during persistent viral infection. Curr. Top. Microbiol. Immunol. 380, 129–144 (2014).

    CAS  PubMed  Google Scholar 

  9. 9

    Veiga-Parga, T., Sehrawat, S. & Rouse, B.T. Role of regulatory T cells during virus infection. Immunol. Rev. 255, 182–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Bengsch, B., Martin, B. & Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 61, 1212–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Fisicaro, P. et al. Combined blockade of programmed death-1 and activation of CD137 increase responses of human liver T cells against HBV, but not HCV. Gastroenterology 143, 1576–1585.e4 (2012).

    Article  CAS  Google Scholar 

  13. 13

    Nebbia, G. et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One 7, e47648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Raziorrouh, B. et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 52, 1934–1947 (2010).

    Article  CAS  Google Scholar 

  15. 15

    Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  Google Scholar 

  16. 16

    Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Latner, D.R., Kaech, S.M. & Ahmed, R. Enhanced expression of cell cycle regulatory genes in virus-specific memory CD8+ T cells. J. Virol. 78, 10953–10959 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Wherry, E.J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Pockley, A.G., Muthana, M. & Calderwood, S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci. 33, 71–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Rowbotham, N.J., Hager-Theodorides, A.L., Furmanski, A.L. & Crompton, T. A novel role for Hedgehog in T-cell receptor signaling: implications for development and immunity. Cell Cycle 6, 2138–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Tanaka, T., Shibazaki, A., Ono, R. & Kaisho, T. HSP70 mediates degradation of the p65 subunit of nuclear factor κB to inhibit inflammatory signaling. Sci. Signal. 7, ra119 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  23. 23

    Goldberg, A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Chondrogianni, N. et al. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 23, 37–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Pandita, T.K. ATM function and telomere stability. Oncogene 21, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Sperka, T., Wang, J. & Rudolph, K.L. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 13, 579–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Sena, L.A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Buck, M.D., O'Sullivan, D. & Pearce, E.L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Groettrup, M., Kirk, C.J. & Basler, M. Proteasomes in immune cells: more than peptide producers? Nat. Rev. Immunol. 10, 73–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Kelso, G.F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588–4596 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Dessolin, J. et al. Selective targeting of synthetic antioxidants to mitochondria: towards a mitochondrial medicine for neurodegenerative diseases? Eur. J. Pharmacol. 447, 155–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Devadas, S., Zaritskaya, L., Rhee, S.G., Oberley, L. & Williams, M.S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J. Exp. Med. 195, 59–70 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Harari, A. et al. Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol. Rev. 211, 236–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    McBride, H.M., Neuspiel, M. & Wasiak, S. Mitochondria: more than just a powerhouse. Curr. Biol. 16, R551–R560 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Kumari, S., Curado, S., Mayya, V. & Dustin, M.L. T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim. Biophys. Acta 1838, 546–556 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  Google Scholar 

  38. 38

    Doering, T.A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Bengsch, B. et al. Bioenergetics insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Petrovas, C. et al. Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8+ T cells. Blood 109, 2505–2513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Ponnappan, S. & Ponnappan, U. Aging and immune function: molecular mechanisms to interventions. Antioxid. Redox Signal. 14, 1551–1585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ron-Harel, N., Sharpe, A.H. & Haigis, M.C. Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology 61, 131–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Sansoni, P. et al. The immune system in extreme longevity. Exp. Gerontol. 43, 61–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    O'Sullivan, R.J., Kubicek, S., Schreiber, S.L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Su, C. et al. DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO J. 23, 1133–1143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Cuervo, A.M. & Macian, F. Autophagy and the immune function in aging. Curr. Opin. Immunol. 29, 97–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Szklarczyk, R., Nooteboom, M. & Osiewacz, H.D. Control of mitochondrial integrity in ageing and disease. Phil. Trans. R. Soc. Lond. B 369, 20130439 (2014).

    Article  CAS  Google Scholar 

  50. 50

    Weber, T.A. & Reichert, A.S. Impaired quality control of mitochondria: aging from a new perspective. Exp. Gerontol. 45, 503–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Dimeloe, S. et al. The immune-metabolic basis of effector memory CD4+ T cell function under hypoxic conditions. J. Immunol. 196, 106–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    D'Souza, A.D., Parikh, N., Kaech, S.M. & Shadel, G.S. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 7, 374–385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    van der Windt, G.J.W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  Google Scholar 

  56. 56

    Yi, J.S., Holbrook, B.C., Michalek, R.D., Laniewski, N.G. & Grayson, J.M. Electron transport complex I is required for CD8+ T cell function. J. Immunol. 177, 852–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Buck, M.D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Gane, E.J. et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Zhang, J. & Fang, H. in Applications of Self-Organizing Maps (ed. Johnsson, M.) 181–204 (In Tech, Rijeka, Croatia, 2012).

  60. 60

    Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  61. 61

    Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Murphy (MRC Mitochondrial Biology Unit Wellcome Trust, Cambridge, UK) for the gift of a MitoQ sample; S. Bicciato (Department of Life Sciences, University of Modena and Reggio Emilia, Italy) for introducing us to GSEA; and the Microarray Facility at the University of Ferrara (http://ltta.tecnopoloferrara.it/bioinformatica.php) for help in the initial phase of bioinformatic analysis. We are also grateful to A. Cossarizza (Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Italy) and A. Merli (Department of Life Sciences, University of Parma, Italy) for their helpful discussions. This work was supported by a grant from Regione Emilia-Romagna, Italy (Programma di Ricerca Regione-Università 2010–2012; PRUa1RI-2012-006 to C.F.), by a grant (2012.0033 to C.F.) from Fondazione Cassa di Risparmio di Parma (Italy), and by a FIRB grant (RBAP10TPXK to C.F.) from the Italian Ministry of Education, University and Research (MIUR to C.F.).

Author information

Affiliations

Authors

Contributions

P.F.: study design, design and execution of the experiments; data acquisition, analysis and interpretation; writing of the manuscript; V.B.: execution of experiments; data acquisition, statistical analysis and interpretation, contribution to manuscript drafting; B.M.: microarray data handling, including GSEA and network analysis; G.A.: execution of experiments; M.F.: microarray data analysis; F.G. and D.S.: execution of Nanostring experiments. C.B.: analysis of data from cell-based assays and patients' characterization; M.M., G.G., T.G. and P.L.: recruitment and characterization of patients; M.C.C.: technical support with patients' characterization. G.M. and M.L.: critical revision of the manuscript; S.O.: study design, data mining and interpretation, writing and revising the manuscript; C.F.: study concept and supervision, data analysis and interpretation, writing and revising the manuscript and funding retrieval.

Corresponding author

Correspondence to Carlo Ferrari.

Ethics declarations

Competing interests

P.L.: Consultant for BMS, Roche, Gilead Sciences, GSK, MSD

M.L.: Consultant for Gilead, Jansen, BMS, Arbutus, Galapagos, Assembly Pharma, Sanofi/Aventis

C.F.: Consultant for Gilead, Abbvie, Arrowhead

Supplementary information

Supplementary Figures and Table

Supplementary Figures 1–8 & Supplementary Table 4 (PDF 1694 kb)

Supplementary Table 1

SOM clusters derived from ANOVA filtered genes (XLSX 76 kb)

Supplementary Table 2

Functional analysis results related to SOM clusters (XLSX 36 kb)

Supplementary Table 3

List of misregulated genes (XLSX 75 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fisicaro, P., Barili, V., Montanini, B. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med 23, 327–336 (2017). https://doi.org/10.1038/nm.4275

Download citation

Further reading