Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

Abstract

Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of small molecules that activate the expression of Snrpn from the maternal chromosome.
Figure 2: UNC0638 activates the expression of candidate PWS-associated genes in fibroblasts derived from individuals with PWS.
Figure 3: UNC0642 improves survival and growth in a mouse model with a paternal deletion from Snrpn to Ube3a (m+/pΔS−U).
Figure 4: UNC0642 activates candidate PWS-associated genes in mouse models with a paternal deletion from Snrpn to Ube3a (m+/pΔS−U).
Figure 5: The activation of candidate PWS-associated genes by UNC0638 and UNC0642 is associated with demethylation of H3K9.
Figure 6: Activation of candidate PWS-associated genes by UNC0638 and UNC0642 is associated with enhanced chromatin accessibility.

Similar content being viewed by others

References

  1. Cassidy, S.B. & Driscoll, D.J. Prader–Willi syndrome. Eur. J. Hum. Genet. 17, 3–13 (2009).

    CAS  PubMed  Google Scholar 

  2. Buiting, K. Prader-Willi syndrome and Angelman syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 365–376 (2010).

    CAS  PubMed  Google Scholar 

  3. Sahoo, T. et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. de Smith, A.J. et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 18, 3257–3265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Duker, A.L. et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18, 1196–1201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bieth, E. et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur. J. Hum. Genet. 23, 252–255 (2015).

    CAS  PubMed  Google Scholar 

  7. Buiting, K. et al. Clinical phenotypes of MAGEL2 mutations and deletions. Orphanet J. Rare Dis. 9, 40 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Schaaf, C.P. et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat. Genet. 45, 1405–1408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanber, D. et al. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur. J. Hum. Genet. 17, 582–590 (2009).

    CAS  PubMed  Google Scholar 

  10. Runte, M. et al. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687–2700 (2001).

    CAS  PubMed  Google Scholar 

  11. de los Santos, T., Schweizer, J., Rees, C.A. & Francke, U. Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am. J. Hum. Genet. 67, 1067–1082 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gallagher, R.C., Pils, B., Albalwi, M. & Francke, U. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am. J. Hum. Genet. 71, 669–678 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Saitoh, S. et al. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci. USA 93, 7811–7815 (1996).

    CAS  PubMed  Google Scholar 

  14. Fulmer-Smentek, S.B. & Francke, U. Association of acetylated histones with paternally expressed genes in the Prader–Willi deletion region. Hum. Mol. Genet. 10, 645–652 (2001).

    CAS  PubMed  Google Scholar 

  15. Xin, Z., Allis, C.D. & Wagstaff, J. Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the Prader-Willi syndrome imprinting center. Am. J. Hum. Genet. 69, 1389–1394 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Saitoh, S. & Wada, T. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am. J. Hum. Genet. 66, 1958–1962 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xin, Z. et al. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278, 14996–15000 (2003).

    CAS  PubMed  Google Scholar 

  18. Auclair, G. et al. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res. 26, 192–202 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sutcliffe, J.S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat. Genet. 8, 52–58 (1994).

    CAS  PubMed  Google Scholar 

  20. Le Meur, E. et al. Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Dev. Biol. 286, 587–600 (2005).

    CAS  PubMed  Google Scholar 

  21. Wu, M.Y., Tsai, T.F. & Beaudet, A.L. Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev. 20, 2859–2870 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, H.S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–189 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Vedadi, M. et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol. 7, 566–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, F. et al. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J. Med. Chem. 56, 8931–8942 (2013).

    CAS  PubMed  Google Scholar 

  25. Liu, F. et al. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem. 54, 6139–6150 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    CAS  PubMed  Google Scholar 

  27. Leung, D.C. et al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl. Acad. Sci. USA 108, 5718–5723 (2011).

    CAS  PubMed  Google Scholar 

  28. Martins-Taylor, K. et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader-Willi syndrome patient with an atypical deletion. Hum. Mol. Genet. 23, 2364–2373 (2014).

    CAS  PubMed  Google Scholar 

  29. Boccaccio, I. et al. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum. Mol. Genet. 8, 2497–2505 (1999).

    CAS  PubMed  Google Scholar 

  30. Chamberlain, S.J. et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc. Natl. Acad. Sci. USA 107, 17668–17673 (2010).

    CAS  PubMed  Google Scholar 

  31. Tsai, T.F., Jiang, Y.H., Bressler, J., Armstrong, D. & Beaudet, A.L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 8, 1357–1364 (1999).

    CAS  PubMed  Google Scholar 

  32. Chamberlain, S.J. & Brannan, C.I. The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73, 316–322 (2001).

    CAS  PubMed  Google Scholar 

  33. Meng, L., Person, R.E. & Beaudet, A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 21, 3001–3012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, Y.H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    CAS  PubMed  Google Scholar 

  35. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tachibana, M., Matsumura, Y., Fukuda, M., Kimura, H. & Shinkai, Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J. 27, 2681–2690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cruvinel, E. et al. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum. Mol. Genet. 23, 4674–4685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. USA 106, 19363–19368 (2009).

    CAS  PubMed  Google Scholar 

  40. Shinkai, Y. & Tachibana, M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Collins, R.E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 15, 245–250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins, R. & Cheng, X. A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res. 38, 3503–3511 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bittencourt, D., Lee, B.H., Gao, L., Gerke, D.S. & Stallcup, M.R. Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics Chromatin 7, 27 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Pai, C.C. et al. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat. Commun. 5, 4091 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamasaki, K. et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 12, 837–847 (2003).

    CAS  PubMed  Google Scholar 

  46. Galiveti, C.R., Raabe, C.A., Konthur, Z. & Rozhdestvensky, T.S. Differential regulation of non-protein coding RNAs from Prader-Willi Syndrome locus. Sci. Rep. 4, 6445 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A. & Feinberg, A.P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 41, 246–250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, X. et al. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J. Am. Chem. Soc. 135, 9315–9317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Booth, M.J. et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 8, 1841–1851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5, e8888 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Garcia-Manero, G. et al. Randomized open-label phase II study of decitabine in patients with low- or intermediate-risk myelodysplastic syndromes. J. Clin. Oncol. 31, 2548–2553 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Treppendahl, M.B., Kristensen, L.S. & Grønbæk, K. Predicting response to epigenetic therapy. J. Clin. Invest. 124, 47–55 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mackay, D.J. et al. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum. Genet. 120, 262–269 (2006).

    CAS  PubMed  Google Scholar 

  54. Mackay, D.J. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

    CAS  PubMed  Google Scholar 

  55. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. Wang, X., Xu, Q., Bey, A.L., Lee, Y. & Jiang, Y.H. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol. Autism 5, 30 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hatcher, J.P. et al. Development of SHIRPA to characterise the phenotype of gene-targeted mice. Behav. Brain Res. 125, 43–47 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Beaudet at Baylor College of Medicine for providing the Snrpn-EGFP mice and some of the PWS cell lines; B. Philpot and M. Zlyka (University of North Carolina at Chapel Hill) for discussion. K. Konze for his advice on the ChIP experiment; S.-O. Han for his advice on blood-sample collection; C. Means and R. Rodriguiz for their assistance with neurological screening; and A. Bey for proofreading and discussion. This study is supported by grants from the US National Institutes of Health (HD077197 to Y.-H.J. and R01GM103893 to J.J.). Y.-H. Jiang is also supported by a grant from the Foundation for Prader–Willi Syndrome Research (FPWR). We thank the International Rett Syndrome Foundation and GlaxoSmithKline for providing the CNS-penetrating drug library (SMART library) and Published Kinase Inhibitor Set (PKIS), the NIMH Psychoactive Drug Screening Program (B.L. Roth) and the Michael Hooker Chair of Translational Proteomics (B.L. Roth).

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and H.-M.L. designed and performed the experiments and wrote the manuscript. Y.X. and J.J. provided G9a inhibitors and epigenetic-small-molecule libraries. N.S. performed the Cell Profiler. B.L.R. supervised the high-content screening and provided small-molecule libraries. X.C. supported cell culture and mouse-colony maintenance. S.W.H. supported mouse-colony maintenance and neurological analysis. J.I.E. performed histopathological analysis. Y.J. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Bryan L Roth or Yong-hui Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 2198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, HM., Xiong, Y. et al. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nat Med 23, 213–222 (2017). https://doi.org/10.1038/nm.4257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4257

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer