Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia


In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction of histone H3K27 trimethylation as a novel pathway of acquired resistance to tyrosine kinase inhibitors (TKIs) and cytotoxic drugs in AML. Low EZH2 protein levels correlated with poor prognosis in AML patients. Suppression of EZH2 protein expression induced chemoresistance of AML cell lines and primary cells in vitro and in vivo. Low EZH2 levels resulted in derepression of HOX genes, and knockdown of HOXB7 and HOXA9 in the resistant cells was sufficient to improve sensitivity to TKIs and cytotoxic drugs. The endogenous loss of EZH2 expression in resistant cells and primary blasts from a subset of relapsed AML patients resulted from enhanced CDK1-dependent phosphorylation of EZH2 at Thr487. This interaction was stabilized by heat shock protein 90 (HSP90) and followed by proteasomal degradation of EZH2 in drug-resistant cells. Accordingly, inhibitors of HSP90, CDK1 and the proteasome prevented EZH2 degradation, decreased HOX gene expression and restored drug sensitivity. Finally, patients with reduced EZH2 levels at progression to standard therapy responded to the combination of bortezomib and cytarabine, concomitant with the re-establishment of EZH2 expression and blast clearance. These data suggest restoration of EZH2 protein as a viable approach to overcome treatment resistance in this AML patient population.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of EZH2 associates with poor prognosis and chemoresistance in AML.
Figure 2: Loss of EZH2 induces dysregulation of HOX genes in resistant AML cells.
Figure 3: CDK1-mediated Thr487 phosphorylation of EZH2 associates with drug resistance in AML cells.
Figure 4: EZH2 is degraded by the proteasome in resistant cells, and proteasome inhibitors restore EZH2 protein levels and drug sensitivity.
Figure 5: Bortezomib induced EZH2 increase in AML patients and therapy response.
Figure 6: Proposed model for EZH2-controlled drug resistance in AML cells.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. Roboz, G.J. Novel approaches to the treatment of acute myeloid leukemia. Hematology Am. Soc. Hematol. Educ. Program 2011, 43–50 (2011).

    PubMed  Google Scholar 

  2. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Krug, U., Büchner, T., Berdel, W.E. & Müller-Tidow, C. The treatment of elderly patients with acute myeloid leukemia. Dtsch. Arztebl. Int. 108, 863–870 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Knoechel, B. et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46, 364–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribeiro, A.F. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 119, 5824–5831 (2012).

    CAS  PubMed  Google Scholar 

  7. Chou, W.C. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118, 3803–3810 (2011).

    CAS  PubMed  Google Scholar 

  8. Metzeler, K.H. et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood 118, 6920–6929 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    CAS  PubMed  Google Scholar 

  10. Shih, A.H., Abdel-Wahab, O., Patel, J.P. & Levine, R.L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    CAS  PubMed  Google Scholar 

  11. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    CAS  PubMed  Google Scholar 

  14. Guglielmelli, P. et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 118, 5227–5234 (2011).

    CAS  PubMed  Google Scholar 

  15. Sashida, G. et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat. Commun. 5, 4177 (2014).

    CAS  PubMed  Google Scholar 

  16. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  17. Zingg, D. et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat. Commun. 6, 6051 (2015).

    CAS  PubMed  Google Scholar 

  18. Bitler, B.G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    CAS  PubMed  Google Scholar 

  19. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimwade, D. et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116, 354–365 (2010).

    CAS  PubMed  Google Scholar 

  21. Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fiskus, W. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114, 2733–2743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stölzel, F. et al. Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells. Ann. Hematol. 89, 653–662 (2010).

    PubMed  Google Scholar 

  24. Heidel, F. et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107, 293–300 (2006).

    CAS  PubMed  Google Scholar 

  25. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91, 12223–12227 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Armstrong, S.A., Golub, T.R. & Korsmeyer, S.J. MLL-rearranged leukemias: insights from gene expression profiling. Semin. Hematol. 40, 268–273 (2003).

    CAS  PubMed  Google Scholar 

  29. Hanson, R.D. et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc. Natl. Acad. Sci. USA 96, 14372–14377 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein, H.U. et al. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models. Bioinformatics 30, 1154–1162 (2014).

    CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  32. Wu, S.C. & Zhang, Y. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. J. Biol. Chem. 286, 28511–28519 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei, Y. et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 13, 87–94 (2011).

    CAS  PubMed  Google Scholar 

  34. Chen, S. & Smith, D.F. Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem. 273, 35194–35200 (1998).

    CAS  PubMed  Google Scholar 

  35. Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. USA 106, 8368–8373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2, 169–178 (2001).

    CAS  PubMed  Google Scholar 

  37. Pabst, C. et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127, 2018–2027 (2016).

    CAS  PubMed  Google Scholar 

  38. Khan, S.N. et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 27, 1301–1309 (2013).

    CAS  PubMed  Google Scholar 

  39. Lindsley, R.C. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Döhner, H. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115, 453–474 (2010).

    PubMed  Google Scholar 

  41. Makishima, H. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119, 3203–3210 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, S.J. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 119, 4480–4485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Attar, E.C. et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J. Clin. Oncol. 31, 923–929 (2013).

    CAS  PubMed  Google Scholar 

  44. Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113, 2375–2385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pabst, C. et al. Identification of small molecules that support human leukemia stem cell activity ex vivo. Nat. Methods 11, 436–442 (2014).

    CAS  PubMed  Google Scholar 

  46. Kim, W. et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat. Chem. Biol. 9, 643–650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Atanassov, I. & Urlaub, H. Increased proteome coverage by combining PAGE and peptide isoelectric focusing: comparative study of gel-based separation approaches. Proteomics 13, 2947–2955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  49. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  50. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  PubMed  Google Scholar 

  51. Oellerich, T. et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood 125, 1936–1947 (2015).

    CAS  PubMed  Google Scholar 

  52. Hömme, C. et al. Low SMC1A protein expression predicts poor survival in acute myeloid leukemia. Oncol. Rep. 24, 47–56 (2010).

    PubMed  Google Scholar 

  53. Remmele, W. & Stegner, H.E. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 8, 138–140 (1987).

    CAS  PubMed  Google Scholar 

  54. Vick, B. et al. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One 10, e0120925 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schoofs, T. et al. DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood 121, 178–187 (2013).

    CAS  PubMed  Google Scholar 

  59. Dietrich, N. et al. REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet. 8, e1002494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lerdrup, M., Johansen, J.V., Agrawal-Singh, S. & Hansen, K. An interactive environment for agile analysis and visualization of ChIP-sequencing data. Nat. Struct. Mol. Biol. 23, 349–357 (2016).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to J.H. Song and T.S. Kim (Korea University, Seoul, Republic of Korea) and to S. Chouaib (INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France) for providing cell lines. The authors thank D. Wendt-Cousin and A. Küttner for excellent technical assistance, and K. Agelopoulos and I. Schulze for assistance with exome library preparation and processing. We are grateful to the University of Münster core facilities IFG/IZKF for performing the Affymetrix gene expression arrays and the LIFA for Illumina sequencing of Exome libraries. We thank atelier42 for designing the graphical model of chemoresistance. S.G. and C.M.-T. hold the copyright for the graphic art. The Münster laboratory of W.E.B. was supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003 Cells in Motion–Cluster of Excellence. This work was further supported by grants from the Deutsche Forschungsgemeinschaft (SPP1463, MU1328/9-2 to C.M.-T.), the German Cancer Aid Foundation (111286 to C.M.-T.), the German José-Carreras Leukemia Foundation (DJCLS R 13/04 to C.M.-T.) and the state of Sachsen-Anhalt (FZK 28/43 to C.M.-T.).

Author information

Authors and Affiliations



S.G., S.A.-S. and T. Schenk performed cell culture experiments, ChIP-seq, quantitative PCR, RNAi, western blotting, immunoprecipitations and flow cytometry; T. Sauer, S.T., G.K. and C.W. performed tissue microarray production, staining and analysis. F.S., G.E. and C.T. performed EZH2 mRNA expression analysis of AML patients and established the MV4-11R cell line. C.T., W.E.B., A.Z., L.P.M. and K.S. provided patient samples. H.-U.K., M.D., S.A.-S., K.H., C.R. and M.L. performed bioinformatic analysis of mRNA expression microarrays, ChIP-Seq and Exome-Seq data. T.O., H.S., K.-T.P. and H.U. performed and analyzed label free and SILAC-labeled mass spectrometry of EZH2. C.T. and S.H. performed diagnostic sequencing of primary AML samples. S.G., C.P., B.V. and I.J. performed and analyzed mouse experiments. All authors discussed the results and commented on the manuscript. S.G. and C.M.-T. designed the study, analyzed the data and wrote the paper. T.O. and S.A.-S. share second authorship of this paper.

Corresponding authors

Correspondence to Stefanie Göllner or Carsten Müller-Tidow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–8, Supplementary Tables 1, 2, 5, 7, and 16 (PDF 18566 kb)

Supplementary Table 3

Mutations in matched diagnosis and relapse samples (XLSX 13 kb)

Supplementary Table 4

Clinical and cytogenetics data of patient samples used for in vitro DZNep treatments. (XLSX 10 kb)

Supplementary Table 6

Target genes determined by integrated analysis of gene expression and ChIP-seq (XLSX 13 kb)

Supplementary Table 8

Data sets and statistics of SILAC (pT487-EZH2) immunoprecipitation quantitative proteomics in MV4-11R EV cells (XLSX 56 kb)

Supplementary Table 9

Data sets and statistics of SILAC (EZH2) immunoprecipitation quantitative proteomics in MV4-11R EV cells (XLSX 88 kb)

Supplementary Table 10

Data sets and statistics of SILAC (pT487-EZH2) immunoprecipitation quantitative proteomics in MV4-11R T487A cells (XLSX 85 kb)

Supplementary Table 11

Data sets and statistics of SILAC (EZH2) immunoprecipitation quantitative proteomics in MV4-11R T487A cells (XLSX 45 kb)

Supplementary Table 12

Data sets and statistics of SILAC (EZH2) immunoprecipitation quantitative proteomics in MV4-11 cells (XLSX 75 kb)

Supplementary Table 13

Data sets and statistics of SILAC (EZH2) immunoprecipitation quantitative proteomics in MV4-11R cells (XLSX 77 kb)

Supplementary Table 14

Data sets and statistics of SILAC (EZH2) immunoprecipitation quantitative proteomics in MV4-11R cells + carfilzomib (XLSX 45 kb)

Supplementary Table 15

Clinical and cytogenetics data of patient samples used for in vitro bortezomib treatment studies (XLSX 10 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göllner, S., Oellerich, T., Agrawal-Singh, S. et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med 23, 69–78 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research