Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patient-derived induced pluripotent stem cells in cancer research and precision oncology

An Author Correction to this article was published on 03 April 2019

Abstract

Together with recent advances in the processing and culture of human tissue, bioengineering, xenotransplantation and genome editing, Induced pluripotent stem cells (iPSCs) present a range of new opportunities for the study of human cancer. Here we discuss the main advantages and limitations of iPSC modeling, and how the method intersects with other patient-derived models of cancer, such as organoids, organs-on-chips and patient-derived xenografts (PDXs). We highlight the opportunities that iPSC models can provide beyond those offered by existing systems and animal models and present current challenges and crucial areas for future improvements toward wider adoption of this technology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An overview of iPSCs and cancer modeling.

Marina Corral Spence/Springer Nature

Figure 2: Potential uses of iPSCs in basic cancer research.

Marina Corral Spence/Springer Nature

Figure 3: Applications of iPSCs in translational cancer research.

Marina Corral Spence/Springer Nature

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Article  PubMed  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  PubMed  Google Scholar 

  3. Papapetrou, E.P. Induced pluripotent stem cells, past and future. Science 353, 991–992 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Onder, T.T. & Daley, G.Q. New lessons learned from disease modeling with induced pluripotent stem cells. Curr. Opin. Genet. Dev. 22, 500–508 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Zeltner, N. & Studer, L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr. Opin. Cell Biol. 37, 102–110 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Crystal, A.S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    CAS  PubMed  Article  Google Scholar 

  9. Fatehullah, A., Tan, S.H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    PubMed  Article  CAS  Google Scholar 

  10. Ridky, T.W., Chow, J.M., Wong, D.J. & Khavari, P.A. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat. Med. 16, 1450–1455 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Vaira, V. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl. Acad. Sci. USA 107, 8352–8356 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Majumder, B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

    CAS  PubMed  Article  Google Scholar 

  13. Gould, S.E., Junttila, M.R. & de Sauvage, F.J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

    CAS  PubMed  Article  Google Scholar 

  14. Day, C.P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Ingber, D.E. Reverse engineering human pathophysiology with organs-on-chips. Cell 164, 1105–1109 (2016).

    CAS  PubMed  Article  Google Scholar 

  16. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Blelloch, R.H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 101, 13985–13990 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Carette, J.E. et al. Generation of iPSCs from cultured human malignant cells. Blood 115, 4039–4042 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Utikal, J., Maherali, N., Kulalert, W. & Hochedlinger, K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci. 122, 3502–3510 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Miyoshi, N. et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc. Natl. Acad. Sci. USA 107, 40–45 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. Zhang, X., Cruz, F.D., Terry, M., Remotti, F. & Matushansky, I. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32, 2249–2260 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. Stricker, S.H. et al. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev. 27, 654–669 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Corominas-Faja, B. et al. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12, 3109–3124 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kim, J. & Zaret, K.S. Reprogramming of human cancer cells to pluripotency for models of cancer progression. EMBO J. 34, 739–747 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Hu, K. et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117, e109–e119 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Gandre-Babbe, S. et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 121, 4925–4929 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Kumano, K. et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119, 6234–6242 (2012).

    CAS  PubMed  Article  Google Scholar 

  28. Hosoi, M. et al. Generation of induced pluripotent stem cells derived from primary and secondary myelofibrosis patient samples. Exp. Hematol. 42, 816–825 (2014).

    CAS  PubMed  Article  Google Scholar 

  29. Kotini, A.G. et al. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat. Biotechnol. 33, 646–655 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Ye, Z. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473–5480 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Ye, Z. et al. Differential sensitivity to JAK inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells 32, 269–278 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Mulero-Navarro, S. et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep. 13, 504–515 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Kim, J. et al. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 3, 2088–2099 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Lee, D.F. et al. Modeling familial cancer with induced pluripotent stem cells. Cell 161, 240–254 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Müller, L.U. et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119, 5449–5457 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Antony-Debré, I. et al. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 125, 930–940 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Soyombo, A.A. et al. Analysis of induced pluripotent stem cells from a BRCA1 mutant family. Stem Cell Reports 1, 336–349 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

    CAS  PubMed  Article  Google Scholar 

  39. Apostolou, E. & Hochedlinger, K. Chromatin dynamics during cellular reprogramming. Nature 502, 462–471 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Papapetrou, E.P. et al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc. Natl. Acad. Sci. USA 106, 12759–12764 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    CAS  PubMed  Article  Google Scholar 

  43. Chin, M.H., Pellegrini, M., Plath, K. & Lowry, W.E. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7, 263–269 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Tapia, N. & Schöler, H.R. Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell 19, 298–309 (2016).

    CAS  PubMed  Article  Google Scholar 

  45. Krijger, P.H. et al. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18, 597–610 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. De Los Angeles, A. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. Chen, K.G., Mallon, B.S., McKay, R.D. & Robey, P.G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Rouhani, F. et al. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet. 10, e1004432 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Kyttälä, A. et al. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports 6, 200–212 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Féraud, O. et al. Donor dependent variations in hematopoietic differentiation among embryonic and induced pluripotent stem cell lines. PLoS One 11, e0149291 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Burrows, C.K. et al. Genetic variation, not cell type of origin, underlies the majority of identifiable regulatory differences in iPSCs. PLoS Genet. 12, e1005793 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Utikal, J. et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145–1148 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Marión, R.M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Ruiz, S. et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr. Biol. 21, 45–52 (2011).

    CAS  PubMed  Article  Google Scholar 

  59. Guo, S. et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Papapetrou, E.P. & Sadelain, M. Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat. Protoc. 6, 1251–1273 (2011).

    CAS  PubMed  Article  Google Scholar 

  61. Visvader, J.E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    CAS  PubMed  Article  Google Scholar 

  62. Chen, Y. et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17, 233–244 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Hrvatin, S. et al. Differentiated human stem cells resemble fetal, not adult, β cells. Proc. Natl. Acad. Sci. USA 111, 3038–3043 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. van den Berg, C.W. et al. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142, 3231–3238 (2015).

    CAS  PubMed  Article  Google Scholar 

  65. Rowe, R.G., Mandelbaum, J., Zon, L.I. & Daley, G.Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Hussein, S.M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    CAS  Article  PubMed  Google Scholar 

  67. Ji, J. et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30, 435–440 (2012).

    CAS  PubMed  Article  Google Scholar 

  68. Young, M.A. et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10, 570–582 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Cheng, L. et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10, 337–344 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Mayshar, Y. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521–531 (2010).

    CAS  Article  PubMed  Google Scholar 

  72. Laurent, L.C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Varela, C. et al. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells. J. Clin. Invest. 122, 569–574 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Peterson, S.E. & Loring, J.F. Genomic instability in pluripotent stem cells: implications for clinical applications. J. Biol. Chem. 289, 4578–4584 (2014).

    CAS  PubMed  Article  Google Scholar 

  75. Liang, G. & Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13, 149–159 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Polo, J.M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Papp, B. & Plath, K. Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324–1343 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Polo, J.M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Ghosh, Z. et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5, e8975 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Bock, C. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Guenther, M.G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Choi, J. et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18, 573–586 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Sterneckert, J.L., Reinhardt, P. & Schöler, H.R. Investigating human disease using stem cell models. Nat. Rev. Genet. 15, 625–639 (2014).

    CAS  PubMed  Article  Google Scholar 

  86. Cox, D.B., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Mandegar, M.A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Kreso, A. & Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    CAS  PubMed  Article  Google Scholar 

  90. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Engle, S.J. & Puppala, D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12, 669–677 (2013).

    CAS  PubMed  Article  Google Scholar 

  92. Engle, S.J. & Vincent, F. Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J. Biol. Chem. 289, 4562–4570 (2014).

    CAS  PubMed  Article  Google Scholar 

  93. Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat. Biotechnol. 30, 1244–1248 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Wainger, B.J. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7, 1–11 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Naryshkin, N.A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    CAS  PubMed  Article  Google Scholar 

  96. Ogawa, M. et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 853–861 (2015).

    CAS  PubMed  Article  Google Scholar 

  97. Sampaziotis, F. et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33, 845–852 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    CAS  PubMed  Article  Google Scholar 

  99. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Article  Google Scholar 

  100. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Grskovic, M., Javaherian, A., Strulovici, B. & Daley, G.Q. Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat. Rev. Drug Discov. 10, 915–929 (2011).

    CAS  PubMed  Article  Google Scholar 

  102. McCracken, K.W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Watson, C.L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Dye, B.R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).

    PubMed Central  Article  Google Scholar 

  105. Schwartz, M.P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl. Acad. Sci. USA 112, 12516–12521 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. Burridge, P.W. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Eggert, U.S. The why and how of phenotypic small-molecule screens. Nat. Chem. Biol. 9, 206–209 (2013).

    CAS  PubMed  Article  Google Scholar 

  108. Friedman, A.A., Letai, A., Fisher, D.E. & Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Garbes, L. et al. VPA response in SMA is suppressed by the fatty acid translocase CD36. Hum. Mol. Genet. 22, 398–407 (2013).

    CAS  PubMed  Article  Google Scholar 

  111. Cao, L. et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci. Transl. Med. 8, 335ra56 (2016).

    PubMed  Article  CAS  Google Scholar 

  112. Terrenoire, C. et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J. Gen. Physiol. 141, 61–72 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Maqsood, M.I., Matin, M.M., Bahrami, A.R. & Ghasroldasht, M.M. Immortality of cell lines: challenges and advantages of establishment. Cell Biol. Int. 37, 1038–1045 (2013).

    PubMed  Article  Google Scholar 

  114. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Henderson, E., Miller, G., Robinson, J. & Heston, L. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 76, 152–163 (1977).

    CAS  PubMed  Article  Google Scholar 

  116. Maherali, N. & Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605 (2008).

    CAS  PubMed  Article  Google Scholar 

  117. Suprynowicz, F.A. et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc. Natl. Acad. Sci. USA 109, 20035–20040 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. Lancaster, M.A. & Knoblich, J.A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    PubMed  Article  CAS  Google Scholar 

  119. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Article  Google Scholar 

  120. Wu, J. & Izpisua Belmonte, J.C. Stem cells: a renaissance in human biology research. Cell 165, 1572–1585 (2016).

    CAS  PubMed  Article  Google Scholar 

  121. Boj, S.F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS  PubMed  Article  Google Scholar 

  122. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Article  Google Scholar 

  124. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Passier, R., Orlova, V. & Mummery, C. Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18, 309–321 (2016).

    CAS  PubMed  Article  Google Scholar 

  127. Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Giobbe, G.G. et al. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12, 637–640 (2015).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

E.P.P. is supported by US National Institutes of Health (NIH) grants R00 DK087923 and R01 HL121570; by the Lawrence Ellison Foundation; by the Damon Runyon Cancer Research Foundation; by the Edward Evans Foundation; and by the Taub Foundation for MDS research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini P Papapetrou.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papapetrou, E. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22, 1392–1401 (2016). https://doi.org/10.1038/nm.4238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4238

Further reading

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer