Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

IAP antagonists induce anti-tumor immunity in multiple myeloma

Abstract

The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pre-clinical activity of LCL161 in MM.
Figure 2: Clinical activity of LCL161 in patients with MM.
Figure 3: LCL161 induces a type-I IFN response in myeloma cells that is required for its in vivo activity.
Figure 4: LCL161 activates MΦ and dendritic cells.
Figure 5: LCL161 treatment promotes MΦ recruitment and phagocytosis of tumor cells.
Figure 6: Adaptive immunity is dispensable for the initial response to LCL161, but combination with PD1 blockade is curative.

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vince, J.E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Petersen, S.L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Najem, S. et al. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L. Oncotarget http://dx.doi.org/10.18632/oncotarget.12055 (2016).

  6. Chen, S.M. et al. Blockade of inhibitors of apoptosis proteins in combination with conventional chemotherapy leads to synergistic antitumor activity in medulloblastoma and cancer stem-like cells. PLoS One 11, e0161299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramakrishnan, V. et al. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget http://dx.doi.org/10.18632/oncotarget.11028 (2016).

  8. Falkenhorst, J. et al. Inhibitor of apoptosis proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib. Oncotarget http://dx.doi.org/10.18632/oncotarget.9159 (2016).

  9. Shekhar, T.M. et al. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 7, 33866–33886 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gerges, S., Rohde, K. & Fulda, S. Co-treatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells. Cancer Lett. 375, 127–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Tian, A. et al. Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells. Cancer Lett. 351, 232–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Qin, Q. et al. Smac mimetic compound LCL161 sensitizes esophageal carcinoma cells to radiotherapy by inhibiting the expression of inhibitor of apoptosis protein. Tumour Biol. 35, 2565–2574 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Yuan, Z. et al. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity. Cancer Gene Ther. 20, 46–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, K.F. et al. Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells. Biochem. Pharmacol. 84, 268–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Weisberg, E. et al. Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24, 2100–2109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Infante, J.R. et al. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 32, 3103–3110 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat. Immunol. 9, 1364–1370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beug, S.T., Cheung, H.H., LaCasse, E.C. & Korneluk, R.G. Modulation of immune signalling by inhibitors of apoptosis. Trends Immunol. 33, 535–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Demchenko, Y.N. et al. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dougan, M. et al. IAP inhibitors enhance co-stimulation to promote tumor immunity. J. Exp. Med. 207, 2195–2206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knights, A.J., Fucikova, J., Pasam, A., Koernig, S. & Cebon, J. Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy. Cancer Immunol. Immunother. 62, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Müller-Sienerth, N. et al. SMAC mimetic BV6 induces cell death in monocytes and maturation of monocyte-derived dendritic cells. PLoS One 6, e21556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  27. Gardam, S. et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117, 4041–4051 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. West, A.C. et al. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock. Oncogenesis 5, e216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petersen, S.L., Peyton, M., Minna, J.D. & Wang, X. Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression. Proc. Natl. Acad. Sci. USA 107, 11936–11941 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beug, S.T. et al. Smac mimetics and innate immune stimuli synergize to promote tumor death. Nat. Biotechnol. 32, 182–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y. et al. Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B cell lymphoma. Cancer Cell 29, 494–507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramakrishnan, V. et al. Inhibitor of apoptosis proteins as therapeutic targets in multiple myeloma. Leukemia 28, 1519–1528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chauhan, D. et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109, 1220–1227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jourdan, M. et al. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur. Cytokine Netw. 10, 65–70 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chesi, M. et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120, 376–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Proietti, E. et al. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J. Clin. Invest. 101, 429–441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pallasch, C.P. et al. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 156, 590–602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christiansen, A.J. et al. Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc. Natl. Acad. Sci. USA 108, 4141–4146 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).

    Article  PubMed  Google Scholar 

  41. Dewannieux, M., Dupressoir, A., Harper, F., Pierron, G. & Heidmann, T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat. Genet. 36, 534–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Chiappinelli, K.B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lecis, D. et al. Smac mimetics induce inflammation and necrotic tumour cell death by modulating macrophage activity. Cell Death Dis. 4, e920 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haabeth, O.A. et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Commun. 2, 240 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Obar, J.J. et al. CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc. Natl. Acad. Sci. USA 107, 193–198 (2010).

    Article  PubMed  Google Scholar 

  49. Hope, C. et al. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 123, 3305–3315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, J. et al. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br. J. Haematol. 158, 336–346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chao, M.P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pyonteck, S.M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beatty, G.L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buhtoiarov, I.N. et al. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132, 226–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tveita, A.A. et al. Indirect CD4+ T-cell-mediated elimination of MHC II(NEG) tumor cells is spatially restricted and fails to prevent escape of antigen-negative cells. Eur. J. Immunol. 44, 2625–2637 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Beg, A.A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Palumbo, A. et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N. Engl. J. Med. 366, 1759–1769 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Morgan, G.J. et al. Cyclophosphamide, thalidomide, and dexamethasone (CTD) as initial therapy for patients with multiple myeloma unsuitable for autologous transplantation. Blood 118, 1231–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baz, R.C. et al. Randomized multicenter phase 2 study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood 127, 2561–2568 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Moav, B. et al. Structure and activity of the translocated c-myc in mouse plasmacytoma XRPC-24. Gene 48, 297–300 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  PubMed  Google Scholar 

  62. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Zaias, J., Mineau, M., Cray, C., Yoon, D. & Altman, N.H. Reference values for serum proteins of common laboratory rodent strains. J. Am. Assoc. Lab. Anim. Sci. 48, 387–390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pitt, L.A. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27, 755–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waite, J.C. et al. Dynamic imaging of the effector immune response to listeria infection in vivo. PLoS Pathog. 7, e1001326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank U. Jariwala, E. Slosberg and colleagues at Novartis for providing LCL161 and supporting the clinical trial. We are grateful to L. Rimsza for assistance with histological evaluation of splenocytes from LCL161 treated Vk*MYC mice and to F. Asimakopoulos for assistance with experimental design. We are indebted to M.S. Diamond (Washington University) for sharing IRF3/7null mice, to David Shealy from Centocor for donating the murine TNF blocking antibody and to P. Cohen (Mayo Clinic Arizona) for donating CD4, CD8 and NK1.1 blocking antibodies. M.C. was supported by research grants from the National Cancer Institute: CA190045 and CA186781.

Author information

Authors and Affiliations

Authors

Contributions

M.C. conceived the experiments. M.C., N.N.M., V.M.G., M.E.S., D.L.R. and N.K. executed the experiments. A.C.D. and H.E.K. provided statistical analysis of preclinical and clinical studies. Y.W.A. and P.L.B. performed bioinformatics analysis. A.C. contributed to the design of the study. G.J.A. processed clinical samples. K.M.M. coordinated patient accrual. R.F. supervised clinical sample processing and data acquisition. M.Q.L., D.D., S.K.K., S.A., A.D., F.B., M.A.G., C.B.R., Y.L., A.A.C.-K., A.K.S. and P.L.B. enrolled myeloma patients in the clinical trial. D.F. and I.A. designed and performed intra-vital microscopy studies. P.L.B. designed and conducted the clinical trial. M.C. and P.L.B. wrote the manuscript.

Corresponding author

Correspondence to Marta Chesi.

Ethics declarations

Competing interests

A.K.S. served as a consultant for Novartis. S.K.K. received research support from Novartis. The LCL161 clinical trial in MM patients was funded by Novartis.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chesi, M., Mirza, N., Garbitt, V. et al. IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat Med 22, 1411–1420 (2016). https://doi.org/10.1038/nm.4229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing