Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis

Abstract

People diagnosed with neuropsychiatric disorders such as depression, anxiety, addiction or schizophrenia often have dysregulated memory, mood, pattern separation and/or reward processing. These symptoms are indicative of a disrupted function of the dentate gyrus (DG) subregion of the brain, and they improve with treatment and remission. The dysfunction of the DG is accompanied by structural maladaptations, including dysregulation of adult-generated neurons. An increasing number of studies using modern inducible approaches to manipulate new neurons show that the behavioral symptoms in animal models of neuropsychiatric disorders can be produced or exacerbated by the inhibition of DG neurogenesis. Thus, here we posit that the connection between neuropsychiatric disorders and dysregulated DG neurogenesis is beyond correlation or epiphenomenon, and that the regulation of adult-generated DG neurogenesis merits continued and focused attention in the ongoing effort to develop novel treatments for neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurogenesis in the DG and its sensitivity to neurotransmitter systems with relevance to common therapies.
Figure 2: Proven and proposed approaches to targeting new DG neurons to recalibrate DG functional output in neuropsychiatric disorders.

Similar content being viewed by others

References

  1. Murray, C.J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    PubMed  Google Scholar 

  2. Bystritsky, A. Treatment-resistant anxiety disorders. Mol. Psychiatry 11, 805–814 (2006).

    CAS  PubMed  Google Scholar 

  3. Mouchlianitis, E., McCutcheon, R. & Howes, O.D. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry 3, 451–463 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Culpepper, L. et al. Suicidality as a possible side effect of antidepressant treatment. J. Clin. Psychiatry 65, 742–749 (2004).

    PubMed  Google Scholar 

  5. Player, M.J. et al. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38, 2101–2108 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Narayan, V.A. & Manji, H.K. Moving from 'diagnose and treat' to 'predict and pre-empt' in neuropsychiatric disorders. Nat. Rev. Drug Discov. 15, 71–72 (2016).

    CAS  PubMed  Google Scholar 

  7. Fattore, L. & Diana, M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci. Biobehav. Rev. 65, 341–361 (2016).

    PubMed  Google Scholar 

  8. Ahmed, A.I.A. et al. Neuropsychiatric adverse events of varenicline: a systematic review of published reports. J. Clin. Psychopharmacol. 33, 55–62 (2013).

    CAS  PubMed  Google Scholar 

  9. Jonas, P. & Lisman, J. Structure, Function, and Plasticity of Hippocampal Dentate Gyrus Microcircuits (Frontiers Media SA, 2015).

  10. Kesner, R.P. in The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications 163, 567–576 (Elsevier, 2007).

    Google Scholar 

  11. Scharfman, H.E. The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications (Elsevier, 2011).

  12. Lopez-Rojas, J. & Kreutz, M.R. Mature granule cells of the dentate gyrus--Passive bystanders or principal performers in hippocampal function? Neurosci. Biobehav. Rev. 64, 167–174 (2016).

    PubMed  Google Scholar 

  13. Gilpin, N.W. & Martin-Fardon, R. Brain Reward & Stress Systems in Addiction (Frontiers Media SA, 2015).

  14. Koob, G.F. & Le Moal, M. Neurobiology of Addiction (Academic Press, 2005).

  15. Wosiski-Kuhn, M. & Stranahan, A.M. From pattern separation to mood regulation: multiple roles for developmental signals in the adult dentate gyrus. Front. Cell. Neurosci. 7, 96 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Amaral, D.G., Scharfman, H.E. & Lavenex, P. in The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications 163, 3–790 (Elsevier, 2007).

    Google Scholar 

  17. Eisch, A.J. & Petrik, D. Depression and hippocampal neurogenesis: a road to remission? Science 338, 72–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schoenfeld, T.J. & Cameron, H.A. Adult neurogenesis and mental illness. Neuropsychopharmacology 40, 113–128 (2015).

    PubMed  Google Scholar 

  19. Lucassen, P.J. et al. Stressing new neurons into depression? Mol. Psychiatry 18, 396–397 (2013).

    CAS  PubMed  Google Scholar 

  20. Marvel, C.L. & Paradiso, S. Cognitive and neurological impairment in mood disorders. Psychiatr. Clin. North Am. 27, 19–36 (2004).

    PubMed  PubMed Central  Google Scholar 

  21. Buckley, P.F., Miller, B.J., Lehrer, D.S. & Castle, D.J. Psychiatric comorbidities and schizophrenia. Schizophr. Bull. 35, 383–402 (2009).

    PubMed  Google Scholar 

  22. Kheirbek, M.A., Klemenhagen, K.C., Sahay, A. & Hen, R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat. Neurosci. 15, 1613–1620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liberzon, I. & Ressler, K. Neurobiology of PTSD: From Brain to Mind (Oxford University Press, 2016).

  24. Das, T., Ivleva, E.I., Wagner, A.D., Stark, C.E.L. & Tamminga, C.A. Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction. Schizophr. Res. 159, 193–197 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Dichter, G.S., Damiano, C.A. & Allen, J.A. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J. Neurodev. Disord. 4, 19 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Kang, E., Wen, Z., Song, H., Christian, K.M. & Ming, G.L. Adult neurogenesis and psychiatric disorders. Cold Spring Harb. Perspect. Biol. 8, a019026 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Aimone, J.B. et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol. Rev. 94, 991–1026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morishita, T., Fayad, S.M., Higuchi, M.-A., Nestor, K.A. & Foote, K.D. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 11, 475–484 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stone, S.S.D. et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 31, 13469–13484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Suthana, N. & Fried, I. Deep brain stimulation for enhancement of learning and memory. Neuroimage 85, 996–1002 (2014).

    PubMed  Google Scholar 

  31. Bergmann, O., Spalding, K.L. & Frisén, J. Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 7, a018994 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Ge, S., Sailor, K.A., Ming, G.-L. & Song, H. Synaptic integration and plasticity of new neurons in the adult hippocampus. J. Physiol. (Lond.) 586, 3759–3765 (2008).

    CAS  Google Scholar 

  33. Vivar, C. & van Praag, H. Functional circuits of new neurons in the dentate gyrus. Front. Neural Circuits 7, 15 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Toni, N. & Sultan, S. Synapse formation on adult-born hippocampal neurons. Eur. J. Neurosci. 33, 1062–1068 (2011).

    PubMed  Google Scholar 

  35. Song, J., Olsen, R.H.J., Sun, J., Ming, G.-L. & Song, H. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018937 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Vivar, C., Potter, M.C. & van Praag, H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr. Top. Behav. Neurosci. 15, 189–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bekinschtein, P., Oomen, C.A., Saksida, L.M. & Bussey, T.J. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol. 22, 536–542 (2011).

    CAS  PubMed  Google Scholar 

  38. Kempermann, G. Seven principles in the regulation of adult neurogenesis. Eur. J. Neurosci. 33, 1018–1024 (2011).

    PubMed  Google Scholar 

  39. Cameron, H.A. in Handbook of Contemporary Neuropharmacology (John Wiley & Sons, Inc., 2007).

  40. Kempermann, G. in Neurogenesis in the Adult Brain I (eds. Seki, T., Sawamoto, K., Parent M.D., J. M. & Alvarez-Buylla, A.) 271–284 (Springer, Japan, 2011).

  41. Noonan, M.A., Choi, K.H., Self, D.W. & Eisch, A.J. Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J. Neurosci. 28, 2516–2526 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Malberg, J.E., Eisch, A.J., Nestler, E.J. & Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown, E.S., Rush, A.J. & McEwen, B.S. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21, 474–484 (1999).

    CAS  PubMed  Google Scholar 

  44. Duman, R.S., Malberg, J. & Thome, J. Neural plasticity to stress and antidepressant treatment. Biol. Psychiatry 46, 1181–1191 (1999).

    CAS  PubMed  Google Scholar 

  45. Canales, J.J. Comparative neuroscience of stimulant-induced memory dysfunction: role for neurogenesis in the adult hippocampus. Behav. Pharmacol. 21, 379–393 (2010).

    CAS  PubMed  Google Scholar 

  46. Mandyam, C.D. & Koob, G.F. The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci. 35, 250–260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Petrik, D., Lagace, D.C. & Eisch, A.J. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 62, 21–34 (2012).

    CAS  PubMed  Google Scholar 

  48. Levone, B.R., Cryan, J.F. & O'Leary, O.F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol. Stress 1, 147–155 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Castilla-Ortega, E. et al. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci. Biobehav. Rev. 66, 15–32 (2016).

    CAS  PubMed  Google Scholar 

  50. Solinas, M., Thiriet, N., Chauvet, C. & Jaber, M. Prevention and treatment of drug addiction by environmental enrichment. Prog. Neurobiol. 92, 572–592 (2010).

    CAS  PubMed  Google Scholar 

  51. Drew, M.R., Denny, C.A. & Hen, R. Arrest of adult hippocampal neurogenesis in mice impairs single- but not multiple-trial contextual fear conditioning. Behav. Neurosci. 124, 446–454 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kheirbek, M.A., Tannenholz, L. & Hen, R. NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination. J. Neurosci. 32, 8696–8702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kheirbek, M.A. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Denny, C.A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Danielson, N.B. et al. Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron 90, 101–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McAvoy, K.M. et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91, 1356–1373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    CAS  PubMed  Google Scholar 

  59. Airan, R.D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819–823 (2007).

    CAS  PubMed  Google Scholar 

  60. Surget, A. et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol. Psychiatry 64, 293–301 (2008).

    CAS  PubMed  Google Scholar 

  61. Surget, A. et al. Antidepressants recruit new neurons to improve stress response regulation. Mol. Psychiatry 16, 1177–1188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Snyder, J.S., Soumier, A., Brewer, M., Pickel, J. & Cameron, H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lehmann, M.L., Brachman, R.A., Martinowich, K., Schloesser, R.J. & Herkenham, M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J. Neurosci. 33, 2961–2972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Noonan, M.A., Bulin, S.E., Fuller, D.C. & Eisch, A.J. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J. Neurosci. 30, 304–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Seo, D.-O., Carillo, M.A., Chih-Hsiung Lim, S., Tanaka, K.F. & Drew, M.R. Adult hippocampal neurogenesis modulates fear learning through associative and nonassociative mechanisms. J. Neurosci. 35, 11330–11345 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arruda-Carvalho, M., Sakaguchi, M., Akers, K.G., Josselyn, S.A. & Frankland, P.W. Posttraining ablation of adult-generated neurons degrades previously acquired memories. J. Neurosci. 31, 15113–15127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Akers, K.G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).

    CAS  PubMed  Google Scholar 

  68. Hill, A.S., Sahay, A. & Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40, 2368–2378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van Dijk, R.M., Huang, S.-H., Slomianka, L. & Amrein, I. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis. Front. Neuroanat. 10, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Bédard, A., Bernier, P.J. & Parent, A. in Neurogenesis in the Adult Brain II (eds. Seki, T., Sawamoto, K., Parent, J.M. & Alvarez-Buylla, A.) 1–21 (Springer, Japan, 2011).

  71. Kempermann, G. Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain (Oxford University Press, 2006).

  72. O'Leary, O.F. & Cryan, J.F. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol. Sci. 35, 675–687 (2014).

    CAS  PubMed  Google Scholar 

  73. Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115 (2007).

    CAS  PubMed  Google Scholar 

  74. Fanselow, M.S. & Dong, H.-W.Arethe dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lacar, B., Parylak, S.L., Vadodaria, K.C., Sarkar, A. & Gage, F.H. Increasing the resolution of the adult neurogenesis picture. F1000Prime Rep. 6, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Kohler, S.J., Williams, N.I., Stanton, G.B., Cameron, J.L. & Greenough, W.T. Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc. Natl. Acad. Sci. USA 108, 10326–10331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bayer, S.A., Yackel, J.W. & Puri, P.S. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216, 890–892 (1982).

    CAS  PubMed  Google Scholar 

  78. Altman, J. & Bayer, S. in The Hippocampus (eds. Isaacson, R. L. & Pribram, K. H.) 95–122 (Springer, US, 1975).

  79. Amrein, I., Slomianka, L. & Lipp, H.-P. Granule cell number, cell death and cell proliferation in the dentate gyrus of wild-living rodents. Eur. J. Neurosci. 20, 3342–3350 (2004).

    PubMed  Google Scholar 

  80. West, M.J., Coleman, P.D. & Flood, D.G. Estimating the number of granule cells in the dentate gyrus with the disector. Brain Res. 448, 167–172 (1988).

    CAS  PubMed  Google Scholar 

  81. Temprana, S.G. et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85, 116–130 (2015).

    CAS  PubMed  Google Scholar 

  82. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lepousez, G., Nissant, A. & Lledo, P.M. Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 86, 387–401 (2015).

    CAS  PubMed  Google Scholar 

  84. Vivar, C. et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat. Commun. 3, 1107 (2012).

    PubMed  Google Scholar 

  85. Platel, J.-C. & Kelsch, W. Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development. Cell. Mol. Life Sci. 70, 3591–3601 (2013).

    CAS  PubMed  Google Scholar 

  86. Ma, D.K., Kim, W.R., Ming, G.-L. & Song, H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. NY Acad. Sci. 1170, 664–673 (2009).

    PubMed  Google Scholar 

  87. Mongiat, L.A. & Schinder, A.F. Adult neurogenesis and the plasticity of the dentate gyrus network. Eur. J. Neurosci. 33, 1055–1061 (2011).

    PubMed  Google Scholar 

  88. Doetsch, F. & Hen, R. Young and excitable: the function of new neurons in the adult mammalian brain. Curr. Opin. Neurobiol. 15, 121–128 (2005).

    CAS  PubMed  Google Scholar 

  89. Wadiche, J.I. & Overstreet-Wadiche, L. New neurons don't talk back. Neuron 85, 3–5 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lemaire, V. et al. Long-lasting plasticity of hippocampal adult-born neurons. J. Neurosci. 32, 3101–3108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaidya, V.A., Vadodaria, K.C. & Jha, S. Neurotransmitter regulation of adult neurogenesis: putative therapeutic targets. CNS Neurol. Disord. Drug Targets 6, 358–374 (2007).

    CAS  PubMed  Google Scholar 

  92. Yamasaki, N. et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol. Brain 1, 6 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Takao, K. et al. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology 38, 1409–1425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayes, J.P. et al. Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. J. Psychiatr. Res. 45, 660–669 (2011).

    PubMed  Google Scholar 

  95. Zhai, T.-Y. et al. Altered intrinsic hippocmapus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects. Behav. Brain Res. 272, 209–217 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Alia-Klein, N., Parvaz, M.A. & Woicik, P.A. Gene × disease interaction on orbitofrontal gray matter in cocaine addiction. Arch. Gen. Psychiatry 68, 283–294 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Boldrini, M. et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol. Psychiatry 72, 562–571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Han, K. et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72–77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, G., Rajkowska, G., Du, F., Seraji-Bozorgzad, N. & Manji, H.K. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729–1734 (2000).

    CAS  PubMed  Google Scholar 

  100. Peng, Z. et al. Ziprasidone ameliorates anxiety-like behaviors in a rat model of PTSD and up-regulates neurogenesis in the hippocampus and hippocampus-derived neural stem cells. Behav. Brain Res. 244, 1–8 (2013).

    CAS  PubMed  Google Scholar 

  101. Keilhoff, G., Fusar-Poli, P. & Becker, A. Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast. 2012, 832757 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Tannenholz, L., Jimenez, J.C. & Kheirbek, M.A. Local and regional heterogeneity underlying hippocampal modulation of cognition and mood. Front. Behav. Neurosci. 8, 147 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Kropff, E., Yang, S.M. & Schinder, A.F. Dynamic role of adult-born dentate granule cells in memory processing. Curr. Opin. Neurobiol. 35, 21–26 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Boldrini, M. et al. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38, 1068–1077 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Miller, B.R. & Hen, R. The current state of the neurogenic theory of depression and anxiety. Curr. Opin. Neurobiol. 30, 51–58 (2015).

    CAS  PubMed  Google Scholar 

  106. Henn, F.A. & Vollmayr, B. Neurogenesis and depression: etiology or epiphenomenon? Biol. Psychiatry 56, 146–150 (2004).

    PubMed  Google Scholar 

  107. Tsai, C.-Y., Tsai, C.-Y., Arnold, S.J. & Huang, G.-J.Ablationof hippocampal neurogenesis in mice impairs the response to stress during the dark cycle. Nat. Commun. 6, 8373 (2015).

    CAS  PubMed  Google Scholar 

  108. Walker, A.K. et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol. Psychiatry 20, 500–508 (2015).

    CAS  PubMed  Google Scholar 

  109. Johnston, S.T., Shtrahman, M., Parylak, S., Gonçalves, J.T. & Gage, F.H. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness. Neurobiol. Learn. Mem. 129, 60–68 (2016).

    PubMed  Google Scholar 

  110. Liu, K.Y., Gould, R.L., Coulson, M.C., Ward, E.V. & Howard, R.J. Tests of pattern separation and pattern completion in humans-A systematic review. Hippocampus 26, 705–717 (2016).

    PubMed  Google Scholar 

  111. Clelland, C.D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Niibori, Y. et al. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat. Commun. 3, 1253 (2012).

    PubMed  Google Scholar 

  113. Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chauvet, C., Lardeux, V., Goldberg, S.R., Jaber, M. & Solinas, M. Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology 34, 2767–2778 (2009).

    PubMed  Google Scholar 

  115. Mustroph, M.L., Stobaugh, D.J., Miller, D.S., DeYoung, E.K. & Rhodes, J.S. Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access. Eur. J. Neurosci. 34, 1161–1169 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. Suthana, N. et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 366, 502–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Roy, D.S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature 531, 508–512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Petrik, D. et al. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. FASEB J. 26, 3148–3162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lagace, D.C. et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J. Neurosci. 27, 12623–12629 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ikrar, T. et al. Adult neurogenesis modifies excitability of the dentate gyrus. Front. Neural Circuits 7, 204 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Song, J. et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat. Neurosci. 16, 1728–1730 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu, E.P. et al. Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J. Neurosci. 33, 2947–2960 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hagihara, H., Takao, K., Walton, N.M., Matsumoto, M. & Miyakawa, T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast. 2013, 318596 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Walton, N.M. et al. Detection of an immature dentate gyrus feature in human schizophrenia/bipolar patients. Transl. Psychiatry 2, e135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bagot, R.C. et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 6, 7062 (2015).

    CAS  PubMed  Google Scholar 

  127. Cho, K.-O. et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6, 6606 (2015).

    CAS  PubMed  Google Scholar 

  128. Yang, S.M., Alvarez, D.D. & Schinder, A.F. Reliable genetic labeling of adult-born dentate granule cells using Ascl1 CreERT2 and Glast CreERT2 murine Lines. J. Neurosci. 35, 15379–15390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lerner, T.N., Ye, L. & Deisseroth, K. Communication in neural circuits: tools, opportunities, and challenges. Cell 164, 1136–1150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sweeney, P. & Yang, Y. An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding. Nat. Commun. 6, 10188 (2015).

    CAS  PubMed  Google Scholar 

  131. Manganas, L.N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Allen, K.M., Fung, S.J. & Weickert, C.S. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust. N. Z. J. Psychiatry 50, 473–480 (2016).

    PubMed  Google Scholar 

  133. Lucassen, P.J., Stumpel, M.W., Wang, Q. & Aronica, E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58, 940–949 (2010).

    CAS  PubMed  Google Scholar 

  134. Boldrini, M. et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34, 2376–2389 (2009).

    CAS  PubMed  Google Scholar 

  135. Reif, A. et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol. Psychiatry 11, 514–522 (2006).

    CAS  PubMed  Google Scholar 

  136. Geuze, E., Vermetten, E. & Bremner, J.D. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol. Psychiatry 10, 160–184 (2005).

    CAS  PubMed  Google Scholar 

  137. Elvsåshagen, T. et al. Evidence for reduced dentate gyrus and fimbria volume in bipolar II disorder. Bipolar Disord. 15, 167–176 (2013).

    PubMed  Google Scholar 

  138. Frey, B.N. et al. The role of hippocampus in the pathophysiology of bipolar disorder. Behav. Pharmacol. 18, 419–430 (2007).

    PubMed  Google Scholar 

  139. Otten, M. & Meeter, M. Hippocampal structure and function in individuals with bipolar disorder: a systematic review. J. Affect. Disord. 174, 113–125 (2015).

    PubMed  Google Scholar 

  140. Moore, G.J., Bebchuk, J.M., Wilds, I.B., Chen, G. & Manji, H.K. Lithium-induced increase in human brain grey matter. Lancet 356, 1241–1242 (2000).

    CAS  PubMed  Google Scholar 

  141. Manji, H.K. et al. The underlying neurobiology of bipolar disorder. World Psychiatry 2, 136–146 (2003).

    PubMed  PubMed Central  Google Scholar 

  142. Barbeau, D., Liang, J.J., Robitalille, Y., Quirion, R. & Srivastava, L.K. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc. Natl. Acad. Sci. USA 92, 2785–2789 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Steen, R.G., Mull, C., McClure, R., Hamer, R.M. & Lieberman, J.A. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 188, 510–518 (2006).

    PubMed  Google Scholar 

  144. Heckers, S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11, 520–528 (2001).

    CAS  PubMed  Google Scholar 

  145. Bremner, J.D. Neuroimaging in posttraumatic stress disorder and other stress-related disorders. Neuroimaging Clin. N. Am. 17, 523–538 (2007).

    PubMed  PubMed Central  Google Scholar 

  146. Bayer, R. et al. Alterations of neuronal precursor cells in stages of human adult neurogenesis in heroin addicts. Drug Alcohol Depend. 156, 139–149 (2015).

    PubMed  Google Scholar 

  147. Mackey, S. & Paulus, M. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neurosci. Biobehav. Rev. 37, 300–316 (2013).

    PubMed  Google Scholar 

  148. Thompson, P.M. et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 6028–6036 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to A.J.E. from the US National Institutes of Health (DA023701, DA023555, MH107945) and the US National Aeronautics and Space Administration (NNX15AE09G). S.Y. was funded by a postdoctoral institutional training grant (NIMH T32-MH076690, Basic Science Training Program in the Neurobiology of Mental Illness, PI, C. Tamminga).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia J Eisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text, Figures and Tables

Causative studies: inducible primary or direct change in dentate gyrus (DG) neurogenesis or DG activity as they relate to DG functional output relevant to psychiatric disorders. (PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Reynolds, R., Masiulis, I. et al. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med 22, 1239–1247 (2016). https://doi.org/10.1038/nm.4218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing