Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The search for imaging biomarkers in psychiatric disorders

Abstract

The field of medicine is moving toward the use of biomarkers for the optimization of individualized care. This is a particular challenge for the field of psychiatry, in which diagnosis is based on a descriptive collection of behaviors without the availability of any objective test to stratify patients. Neuroimaging techniques such as molecular imaging with positron-emission tomography (PET) or structural and functional magnetic resonance imaging (MRI) provide an opportunity to bring psychiatry from an era of subjective descriptive classification into objective and tangible brain-based measures. Here we provide steps toward the development of robust, reliable and valid biomarkers. The success of such development is crucial because it will enable the field of psychiatry to move forward into the era of modern medicine.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genetic and imaging biomarkers.
Figure 2: Steps for biomarker discovery.
Figure 3: Statistically significant findings versus clinically useful biomarkers.

References

  1. Collins, F.S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  Google Scholar 

  2. Normanno, N. & Cree, I.A. Genomics driven-oncology: challenges and perspectives. BMC Cancer 15, 141 (2015).

    Article  Google Scholar 

  3. Kalia, M. Biomarkers for personalized oncology: recent advances and future challenges. Metabolism 64 (Suppl. 1), S16–S21 (2015).

    Article  CAS  Google Scholar 

  4. El Achkar, C.M., Olson, H.E., Poduri, A. & Pearl, P.L. The genetics of the epilepsies. Curr. Neurol. Neurosci. Rep. 15, 39 (2015).

    Article  Google Scholar 

  5. Soni, A. in The Five Most Costly Conditions, 1996 and 2006: Estimates for the U.S. Civilian Non-institutionalized Population 1–3 (Agency for Healthcare Research and Quality, 2009).

  6. Kessler, R.C. et al. Individual and societal effects of mental disorders on earnings in the United States: results from the national comorbidity survey replication. Am. J. Psychiatry 165, 703–711 (2008).

    Article  Google Scholar 

  7. Van Snellenberg, J.X. et al. Mechanisms of working memory impairment in schizophrenia. Biol. Psychiatry 80, 617–626 – (2016).

    Article  Google Scholar 

  8. Setiawan, E. et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72, 268–275 (2015).

    Article  Google Scholar 

  9. Doorduin, J. et al. Neuroinflammation in schizophrenia-related psychosis: a PET study. J. Nucl. Med. 50, 1801–1807 (2009).

    Article  Google Scholar 

  10. van Berckel, B.N. et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry 64, 820–822 (2008).

    Article  Google Scholar 

  11. Kenk, M. et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in vivo PET study with [18F]-FEPPA. Schizophr. Bull. 41, 85–93 (2015).

    Article  Google Scholar 

  12. Innis, R.B. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow Metab. 27, 1533–1539 (2007).

    Article  CAS  Google Scholar 

  13. Plichta, M.M. et al. Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage 60, 1746–1758 (2012).

    Article  Google Scholar 

  14. Glasser, M.F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  Google Scholar 

  15. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.60 (2016).

  16. Howes, O.D. et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 69, 776–786 (2012).

    Article  CAS  Google Scholar 

  17. Demjaha, A., Murray, R.M., McGuire, P.K., Kapur, S. & Howes, O.D. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am. J. Psychiatry 169, 1203–1210 (2012).

    Article  Google Scholar 

  18. Schobel, S.A. et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78, 81–93 (2013).

    Article  CAS  Google Scholar 

  19. Schobel, S.A. et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch. Gen. Psychiatry 66, 938–946 (2009).

    Article  Google Scholar 

  20. Radua, J. et al. Ventral striatal activation during reward processing in psychosis: A neurofunctional meta-analysis. JAMA Psychiatry 72, 1243–1251 (2015).

    Article  Google Scholar 

  21. Mayberg, H.S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    CAS  PubMed  Google Scholar 

  22. Seminowicz, D.A. et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22, 409–418 (2004).

    Article  CAS  Google Scholar 

  23. Mayberg, H.S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  Google Scholar 

  24. Fritz, H.C. et al. Current smoking and reduced gray matter volume—a voxel-based morphometry study. Neuropsychopharmacology 39, 2594–2600 (2014).

    Article  Google Scholar 

  25. Konova, A.B. et al. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction. Eur. J. Neurosci. 36, 2979–2988 (2012).

    Article  Google Scholar 

  26. Martinez, D. et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 29, 1190–1202 (2004).

    Article  CAS  Google Scholar 

  27. Martinez, D. et al. Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biol. Psychiatry 71, 192–198 (2012).

    Article  CAS  Google Scholar 

  28. Martinez, D. et al. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am. J. Psychiatry 168, 634–641 (2011).

    Article  Google Scholar 

  29. Radua, J., van den Heuvel, O.A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).

    Article  Google Scholar 

  30. Etkin, A. & Wager, T.D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  Google Scholar 

  31. Perlis, R.H. Translating biomarkers to clinical practice. Mol. Psychiatry 16, 1076–1087 (2011).

    Article  CAS  Google Scholar 

  32. Koutsouleris, N. et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch. Gen. Psychiatry 66, 700–712 (2009).

    Article  Google Scholar 

  33. Cannon, T.D. et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch. Gen. Psychiatry 65, 28–37 (2008).

    Article  Google Scholar 

  34. Brown, M.R. et al. ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 6, 69 (2012).

    Article  Google Scholar 

  35. Horga, G., Kaur, T. & Peterson, B.S. Annual research review: Current limitations and future directions in MRI studies of child- and adult-onset developmental psychopathologies. J. Child Psychol. Psychiatry 55, 659–680 (2014).

    Article  Google Scholar 

  36. Marquand, A.F. et al. Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: a multi-class pattern recognition approach. Neuroimage 60, 1015–1024 (2012).

    Article  CAS  Google Scholar 

  37. Huys, Q.J., Maia, T.V. & Frank, M.J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

    Article  CAS  Google Scholar 

  38. Bansal, R. et al. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS One 7, e50698 (2012).

    Article  CAS  Google Scholar 

  39. Schnack, H.G. et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 84, 299–306 (2014).

    Article  Google Scholar 

  40. Laughren, T.P. What's next after 50 years of psychiatric drug development: an FDA perspective. J. Clin. Psychiatry 71, 1196–1204 (2010).

    Article  Google Scholar 

  41. Slifstein, M. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 72, 316–324 (2015).

    Article  Google Scholar 

  42. Addington, J. et al. North American Prodrome Longitudinal Study (NAPLS 2): The prodromal symptoms. J. Nerv. Ment. Dis. 203, 328–335 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

G.H. is funded by the US National Institutes of Health (grant K23MH101637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anissa Abi-Dargham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abi-Dargham, A., Horga, G. The search for imaging biomarkers in psychiatric disorders. Nat Med 22, 1248–1255 (2016). https://doi.org/10.1038/nm.4190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4190

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research