Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of splicing in cancer

Abstract

Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein–RNA interactions in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse mechanisms by which alterations in splicing promote cancer and treatment resistance.
Figure 2: Methods by which splicing may be modulated for cancer therapy.
Figure 3: Pharmacologic methods to disrupt core spliceosome function.

Similar content being viewed by others

References

  1. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Jung, H. et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 47, 1242–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graubert, T.A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2012).

    Article  CAS  Google Scholar 

  9. Harbour, J.W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    Article  CAS  Google Scholar 

  11. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karni, R. et al. The gene encoding the splicing factor SF2 (ASF) is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, M.A., Wilkinson, J.E. & Krainer, A.R. Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat. Struct. Mol. Biol. 21, 189–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anczuków, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danan-Gotthold, M. et al. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 43, 5130–5144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, L., Tovar-Corona, J.M. & Urrutia, A.O. Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts. Hum. Mol. Genet. 20, 4422–4429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dvinge, H. & Bradley, R.K. Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 7, 45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, T.H. et al. The architecture of the spliceosomal U4–U6–U5 tri-snRNP. Nature 523, 47–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan, C. et al. Structure of a yeast spliceosome at 3.6-Å resolution. Science 349, 1182–1191 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, T.H. et al. Cryo-EM structure of the yeast U4–U6–U5 tri-snRNP at 3.7-Å resolution. Nature 530, 298–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan, R. et al. The 3.8-Å structure of the U4–U6–U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, X.D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wahl, M.C., Will, C.L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matera, A.G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shepard, P.J. & Hertel, K.J. The SR protein family. Genome Biol. 10, 242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Busch, A. & Hertel, K.J. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip. Rev. RNA 3, 1–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Simon, J.M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, P.C. et al. c-MET mutational analysis in small-cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 63, 6272–6281 (2003).

    CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  32. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  33. Puente, X.S. et al. Noncoding recurrent mutations in chronic lymphocytic leukemia. Nature 526, 519–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R.K. RNA splicing factors as oncoproteins and tumor suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inoue, D., Bradley, R.K. & Abdel-Wahab, O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev. 30, 989–1001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilagan, J.O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branch-point usage. Nat. Commun. 7, 10615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darman, R.B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, J. & Manley, J.L. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3, 1228–1237 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo) 49, 1204–1211 (1996).

    Article  CAS  Google Scholar 

  44. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiot. (Tokyo) 49, 1196–1203 (1996).

    Article  CAS  Google Scholar 

  45. Sakai, Y. et al. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. I. Taxonomy, production, isolation, physicochemical properties and biological activities. J. Antibiot. (Tokyo) 55, 855–862 (2002).

    Article  CAS  Google Scholar 

  46. Mizui, Y. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J. Antibiot. (Tokyo) 57, 188–196 (2004).

    Article  CAS  Google Scholar 

  47. Sakai, T., Asai, N., Okuda, A., Kawamura, N. & Mizui, Y. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. II. Physicochemical properties and structure elucidation. J. Antibiot. (Tokyo) 57, 180–187 (2004).

    Article  CAS  Google Scholar 

  48. Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumor drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Webb, T.R., Joyner, A.S. & Potter, P.M. The development and application of small-molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov. Today 18, 43–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Lagisetti, C. et al. Pre-mRNA splicing-modulatory pharmacophores: the total synthesis of herboxidiene, a pladienolide–herboxidiene hybrid analog and related derivatives. ACS Chem. Biol. 9, 643–648 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Mandel, A.L., Jones, B.D., La Clair, J.J. & Burkart, M.D. A synthetic entry to pladienolide B and FD-895. Bioorg. Med. Chem. Lett. 17, 5159–5164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Albert, B.J., Sivaramakrishnan, A., Naka, T., Czaicki, N.L. & Koide, K. Total syntheses, fragmentation studies and antitumor–antiproliferative activities of FR901464 and its low-picomolar analog. J. Am. Chem. Soc. 129, 2648–2659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson, C.F., Jamison, T.F. & Jacobsen, E.N. FR901464: total synthesis, proof of structure and evaluation of synthetic analogs. J. Am. Chem. Soc. 123, 9974–9983 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Arai, K. et al. Total synthesis of 6-deoxypladienolide D and assessment of splicing inhibitory activity in a mutant SF3B1 cancer cell line. Org. Lett. 16, 5560–5563 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Fan, L., Lagisetti, C., Edwards, C.C., Webb, T.R. & Potter, P.M. Sudemycins, novel small-molecule analogs of FR901464, induce alternative gene splicing. ACS Chem. Biol. 6, 582–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch-point recognition and alternative splicing induced by the antitumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasegawa, M. et al. Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem. Biol. 6, 229–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Yokoi, A. et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 278, 4870–4880 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Folco, E.G., Coil, K.E. & Reed, R. The antitumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch-point-binding region. Genes Dev. 25, 440–444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roybal, G.A. & Jurica, M.S. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res. 38, 6664–6672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Effenberger, K.A., Urabe, V.K., Prichard, B.E., Ghosh, A.K. & Jurica, M.S. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages. RNA 22, 350–359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, S.C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, Q. et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 75, 1949–1958 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Shirai, C.L. et al. Preclinical activity of splicing modulators in U2AF1-mutant MDS–AML. Blood 126, 1653 (2015).

    Article  Google Scholar 

  67. Poulikakos, P.I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAFV600E. Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salton, M. et al. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun. 6, 7103 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Eskens, F.A. et al. Phase 1 pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Hong, D.S. et al. A phase 1, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Iwata, M. et al. E7107, a new 7-urethane derivative of pladienolide D, displays curative effect against several human tumor xenografts. Cancer Res. 64, 691 (2004).

    Google Scholar 

  72. David, C.J., Chen, M., Assanah, M., Canoll, P. & Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Das, S., Anczuków, O., Akerman, M. & Krainer, A.R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep. 1, 110–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koh, C.M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Stopa, N., Krebs, J.E. & Shechter, D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci. 72, 2041–2059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang, Y. & Bedford, M.T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Kryukov, G.V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mavrakis, K.J. et al. Disordered methionine metabolism in MTAP- and CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Hubert, C.G. et al. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes Dev. 27, 1032–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rzymski, T., Grzmil, P., Meinhardt, A., Wolf, S. & Burfeind, P. PHF5A represents a bridge protein between splicing proteins and ATP-dependent helicases and is differentially expressed during mouse spermatogenesis. Cytogenet. Genome Res. 121, 232–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Hsu, T.Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karni, R., Hippo, Y., Lowe, S.W. & Krainer, A.R. The splicing factor oncoprotein SF2 (ASF) activates mTORC1. Proc. Natl. Acad. Sci. USA 105, 15323–15327 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. USA 112, E4726–E4734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Giannakouros, T., Nikolakaki, E., Mylonis, I. & Georgatsou, E. Serine–arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J. 278, 570–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, Z. & Fu, X.D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prasad, J., Colwill, K., Pawson, T. & Manley, J.L. The protein kinase Clk (Sty) directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19, 6991–7000 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Colwill, K. et al. The Clk (Sty) protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15, 265–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lai, M.C., Lin, R.I. & Tarn, W.Y. Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem. J. 371, 937–945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J. Biol. Chem. 279, 24246–24254 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. McClorey, G. & Wood, M.J. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol. 24, 52–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Araki, S. et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10, e0116929 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Castanotto, D. & Stein, C.A. Antisense oligonucleotides in cancer. Curr. Opin. Oncol. 26, 584–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kole, R., Krainer, A.R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zanetta, C. et al. Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin. Ther. 36, 128–140 (2014).

    Article  PubMed  Google Scholar 

  97. Hua, Y., Vickers, T.A., Okunola, H.L., Bennett, C.F. & Krainer, A.R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lu, Q.L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat. Med. 9, 1009–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7-snRNA-mediated exon skipping. Science 306, 1796–1799 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Anczuków, O. et al. SRSF1-regulated alternative splicing in breast cancer. Mol. Cell 60, 105–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pandit, S. et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol. Cell 50, 223–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Visconte, V. et al. Distinct iron architecture in SF3B1-mutant myelodysplastic syndrome patients is linked to an SLC25A37 splice variant with a retained intron. Leukemia 29, 188–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Kong-Beltran, M. et al. Somatic mutations lead to an oncogenic deletion of MET in lung cancer. Cancer Res. 66, 283–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Paik, P.K. et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 5, 842–849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bezzi, M. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27, 1903–1916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aukema, K.G., Chohan, K.K., Plourde, G.L., Reimer, K.B. & Rader, S.D. Small-molecule inhibitors of yeast pre-mRNA splicing. ACS Chem. Biol. 4, 759–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Pilch, B. et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly and splicing by the antitumor drug NB-506. Cancer Res. 61, 6876–6884 (2001).

    CAS  PubMed  Google Scholar 

  108. Kim, H. et al. Identification of a novel function of CX-4945 as a splicing regulator. PLoS One 9, e94978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sehgal, P.B., Darnell, J.E. Jr. & Tamm, I. The inhibition by DRB (5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell 9, 473–480 (1976).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, X. et al. Genomics-guided discovery of thailanstatins A, B and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J. Nat. Prod. 76, 685–693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seki-Asano, M. et al. Isolation and characterization of a new 12-membered macrolide FD-895. J. Antibiot. (Tokyo) 47, 1395–1401 (1994).

    Article  CAS  Google Scholar 

  112. Sakai, T. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. J. Antibiot. (Tokyo) 57, 173–179 (2004).

    Article  CAS  Google Scholar 

  113. Lagisetti, C. et al. Optimization of antitumor modulators of pre-mRNA splicing. J. Med. Chem. 56, 10033–10044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fukuhara, T. et al. Utilization of host SR protein kinases and RNA splicing machinery during viral replication. Proc. Natl. Acad. Sci. USA 103, 11329–11333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Siqueira, R.P. et al. Potential antileukemia effect and structural analyses of SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340). PLoS One 10, e0134882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.C.-W.L. is supported by a Leukemia and Lymphoma Society (LLS) Special Fellow Award. O.A.-W. is supported by grants from the Edward P. Evans Foundation, the Department of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041), the US National Institutes of Health (NIH)–NHLBI (R01 HL128239), the Josie Robertson Investigator Program, the Mr. William H. Goodwin and Mrs. Alice Goodwin Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of MSKCC and the Pershing Square Sohn Cancer Research Alliance, as well as by an NIH K08 Clinical Investigator Award (1K08CA160647-01), a Damon Runyon Clinical Investigator Award and an award from the Starr Foundation (I8-A8-075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abdel-Wahab.

Ethics declarations

Competing interests

O.A.-W. receives funding support from H3 Biomedicine Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SW., Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat Med 22, 976–986 (2016). https://doi.org/10.1038/nm.4165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4165

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer