Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease

Abstract

The binding of autoantibodies (autoAbs) to interferon (IFN)-γ in people with mycobacterial diseases has become an emerging medical concern. Many patients display specific human leukocyte antigen (HLA) class II haplotypes, which suggests that a common T cell–dependent and B cell–dependent mechanism might underlie the production of specific anti-IFN-γ autoAbs. We show here that these autoAbs target a major epitope (amino acids 121–131, designated position (P)121–131) in a region crucial for IFN-γ receptor (IFN-γR) activation to impair IFN-γ-mediated activities. The amino acid sequence of this epitope is highly homologous to a stretch in the Noc2 protein of Aspergillus spp., which was cross-reactive with autoAbs from patients. Rats immunized with Aspergillus Noc2 developed antibodies that reacted with human IFN-γ. We generated an epitope-erased variant of IFN-γ (EE-IFN-γ), in which the major neutralizing epitope region was altered. The binding affinity of anti-IFN-γ autoAbs for EE-IFN-γ was reduced by about 40%, as compared to that for IFN-γ1–131. Moreover, EE-IFN-γ activated the IFN-γR downstream signaling pathway ex vivo, irrespectively of anti-IFN-γ autoAbs. In conclusion, we identified a common, crucial B cell epitope that bound to anti-IFN-γ autoAbs in patients, and we propose a molecular-mimicry model for autoAb development. In addition, treatment with EE-IFN-γ might be worth investigating in patients producing anti-IFN-γ autoAbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AutoAbs against IFN-γ recognize the C-terminal region of IFN-γ.
Figure 2: Multiple amino acid sequence alignment for IFN-γ from different species and EE-IFN-γ.
Figure 3: Anti-IFN-γ autoAbs against epitope P121–131 neutralize IFN-γ signaling.
Figure 4: Molecular mimicry.
Figure 5: Restoration of IFN-γ by EE-IFN-γ ex vivo.

Similar content being viewed by others

References

  1. Döffinger, R. et al. Autoantibodies to interferon-γ in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 38, e10–e14 (2004).

    Article  PubMed  Google Scholar 

  2. Höflich, C. et al. Naturally occurring anti-IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 103, 673–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Kampmann, B. et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. J. Clin. Invest. 115, 2480–2488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel, S.Y. et al. Anti-IFN-γ autoantibodies in disseminated nontuberculous mycobacterial infections. J. Immunol. 175, 4769–4776 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Puel, A. et al. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 180, 647–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Browne, S.K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chi, C.Y. et al. Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 121, 1357–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, L.B. et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J. Immunol. 190, 3959–3966 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, W.I. et al. Patients with inhibitory and neutralizing auto-antibodies to interferon-γ resemble the sporadic adult-onset phenotype of mendelian susceptibility to mycobacterial disease (MSMD) lacking bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology 218, 762–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Browne, S.K. Anticytokine autoantibody-associated immunodeficiency. Annu. Rev. Immunol. 32, 635–657 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Rosen, L.B. et al. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in disseminated/extrapulmonary nocardiosis. Clin. Infect. Dis. 60, 1017–1025 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Chi, C.Y. et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-γ autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine (Baltimore) 95, e3927 (2016).

    Article  CAS  Google Scholar 

  14. Levin, M. et al. Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet 345, 79–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Casanova, J.L. et al. Idiopathic disseminated bacillus Calmette-Guérin infection: a French national retrospective study. Pediatrics 98, 774–778 (1996).

    CAS  PubMed  Google Scholar 

  16. Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J.L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puel, A. & Casanova, J.L. Autoantibodies against cytokines: back to human genetics. Blood 121, 1246–1247 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Sfriso, P. et al. Infections and autoimmunity: the multifaceted relationship. J. Leukoc. Biol. 87, 385–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Rowley, D. & Jenkin, C.R. Antigenic cross-reaction between host and parasite as a possible cause of pathogenicity. Nature 193, 151–154 (1962).

    Article  CAS  PubMed  Google Scholar 

  20. Cusick, M.F., Libbey, J.E. & Fujinami, R.S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. van den Berg, B. et al. Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat. Rev. Neurol. 10, 469–482 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088–1096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ku, C.L. et al. Anti-IFN-γ autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. J. Allergy Clin. Immunol. 137, 945–948.e8 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Emini, E.A., Hughes, J.V., Perlow, D.S. & Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836–839 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsen, J.E., Lund, O. & Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2, 2 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bordoli, L. et al. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Ealick, S.E. et al. Three-dimensional structure of recombinant human interferon-γ. Science 252, 698–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Walter, M.R. et al. Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 376, 230–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Thiel, D.J. et al. Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex. Structure 8, 927–936 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Lundell, D. et al. The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis. Protein Eng. 4, 335–341 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Savan, R., Ravichandran, S., Collins, J.R., Sakai, M. & Young, H.A. Structural conservation of interferon γ among vertebrates. Cytokine Growth Factor Rev. 20, 115–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basham, T.Y. & Merigan, T.C. Recombinant interferon-γ increases HLA-DR synthesis and expression. J. Immunol. 130, 1492–1494 (1983).

    CAS  PubMed  Google Scholar 

  33. Seelig, G.F., Wijdenes, J., Nagabhushan, T.L. & Trotta, P.P. Evidence for a polypeptide segment at the carboxyl terminus of recombinant human gamma interferon involved in expression of biological activity. Biochemistry 27, 1981–1987 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proc. Natl. Acad. Sci. USA 110, 7832–7837 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Piccoli, L. et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6, 7375 (2015).

    Article  PubMed  Google Scholar 

  36. Baxter, C.G. et al. Performance of two Aspergillus IgG EIA assays compared with the precipitin test in chronic and allergic aspergillosis. Clin. Microbiol. Infect. 19, E197–E204 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Barnes, P.D. & Marr, K.A. Aspergillosis: spectrum of disease, diagnosis, and treatment. Infect. Dis. Clin. North Am. 20, 545–561 (2006).

    Article  PubMed  Google Scholar 

  38. Nguyen, L.D., Viscogliosi, E. & Delhaes, L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front. Microbiol. 6, 89 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Chaudhary, N., Staab, J.F. & Marr, K.A. Healthy human T-Cell Responses to Aspergillus fumigatus antigens. PLoS One 5, e9036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oldstone, M.B. Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Neal, C.O. et al. Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiol. 11, 203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Browne, S.K. et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. Blood 119, 3933–3939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, V.K. et al. Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS). Pediatr. Blood Cancer 52, 847–852 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Keating, G.M. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs 70, 1445–1476 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Sologuren, I. et al. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum. Mol. Genet. 20, 1509–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the clinicians and patients who participated in this study. This work was supported by the Taiwan National Health Research Institutes grant NHRI-EX100-10028SC (C.-L.K.), Taiwan Ministry of Science and Technology grant 100-2314-B-182-050 (C.-L.K.), 102-2320-B-182-024 (C.-L.K.) and 103-2320-B-182-012 (C.-L.K.), and Chang Gung Memorial Hospital grant CMRPD1F0201 (C.-L.K.), CORPD1F0041 (C.-L.K.) and BMRPB98 (C.-L.K.).

Author information

Authors and Affiliations

Authors

Contributions

C.-H. Lin and C.-L.K. designed the study and analyzed the data, and wrote the manuscript; C.-H. Lin., C.-Y.C., H.-P.S., J.-Y.D. and C.-C.L. performed the research and analyzed the data; C.-F.Y., M.-W.H. and C.-H. Lee referred the patients and designed the study; S.-Y.W., C.-Y.K., K.-H.T., S.-H.L., H.-K.C., C.-H.H. and H.-C.L. analyzed the data; H.-K.C. and C.-H.H. wrote and edited the manuscript.

Corresponding author

Correspondence to Cheng-Lung Ku.

Ethics declarations

Competing interests

A patent application concerning EE-IFN-γ has been submitted by C.-H. Lin, C.-Y.C., J.-Y.D., H.-P.S. and C.-L.K. on the basis of these results.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Table 1 (PDF 6602 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Chi, CY., Shih, HP. et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat Med 22, 994–1001 (2016). https://doi.org/10.1038/nm.4158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4158

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research