Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma

Abstract

The protein kinase B-Raf proto-oncogene, serine/threonine kinase (BRAF) is an oncogenic driver and therapeutic target in melanoma. Inhibitors of BRAF (BRAFi) have shown high response rates and extended survival in patients with melanoma who bear tumors that express mutations encoding BRAF proteins mutant at Val600, but a vast majority of these patients develop drug resistance1,2. Here we show that loss of stromal antigen 2 (STAG2) or STAG3, which encode subunits of the cohesin complex, in melanoma cells results in resistance to BRAFi. We identified loss-of-function mutations in STAG2, as well as decreased expression of STAG2 or STAG3 proteins in several tumor samples from patients with acquired resistance to BRAFi and in BRAFi-resistant melanoma cell lines. Knockdown of STAG2 or STAG3 expression decreased sensitivity of BRAFVal600Glu-mutant melanoma cells and xenograft tumors to BRAFi. Loss of STAG2 inhibited CCCTC-binding-factor-mediated expression of dual specificity phosphatase 6 (DUSP6), leading to reactivation of mitogen-activated protein kinase (MAPK) signaling (via the MAPKs ERK1 and ERK2; hereafter referred to as ERK). Our studies unveil a previously unknown genetic mechanism of BRAFi resistance and provide new insights into the tumor suppressor function of STAG2 and STAG3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased expression of STAG2 and STAG3 in BRAFi-resistant melanoma primary patient tumors and cell lines.
Figure 2: Knockdown of STAG2 or STAG3 expression decreases BRAFi sensitivity in BRAF-mutant melanoma cells.
Figure 3: Knockdown of STAG2 or STAG3 impairs the effects of vemurafenib on inhibiting melanoma xenograft tumor growth in vivo.
Figure 4: STAG2 regulates ERK activity by controlling expression of DUSP6.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Ribas, A. & Flaherty, K.T. BRAF-targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  Google Scholar 

  2. Holderfield, M., Deuker, M.M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    Article  CAS  Google Scholar 

  3. Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF–MEK co-targeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).

    Article  CAS  Google Scholar 

  4. Van Allen, E.M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  CAS  Google Scholar 

  5. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  Google Scholar 

  6. Lito, P., Rosen, N. & Solit, D.B. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013).

    Article  CAS  Google Scholar 

  7. Kwong, L.N. et al. Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma. J. Clin. Invest. 125, 1459–1470 (2015).

    Article  Google Scholar 

  8. Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF–MEK inhibition. Cancer Discov. 4, 61–68 (2014).

    Article  CAS  Google Scholar 

  9. Long, G.V. et al. Increased MAPK reactivation in early resistance to dabrafenib–trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 5, 5694 (2014).

    Article  CAS  Google Scholar 

  10. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  Google Scholar 

  11. Solomon, D.A., Kim, J.-S. & Waldman, T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep. 47, 299–310 (2014).

    Article  Google Scholar 

  12. Losada, A. Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14, 389–393 (2014).

    Article  CAS  Google Scholar 

  13. Solomon, D.A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  Google Scholar 

  14. Balbás-Martínez, C. et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat. Genet. 45, 1464–1469 (2013).

    Article  Google Scholar 

  15. Guo, G. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 45, 1459–1463 (2013).

    Article  CAS  Google Scholar 

  16. Weinstein, J.N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  17. Solomon, D.A. et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat. Genet. 45, 1428–1430 (2013).

    Article  CAS  Google Scholar 

  18. Crompton, B.D. et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 4, 1326–1341 (2014).

    Article  CAS  Google Scholar 

  19. Tirode, F. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014).

    Article  CAS  Google Scholar 

  20. Thol, F. et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914–920 (2014).

    Article  CAS  Google Scholar 

  21. Thota, S. et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 124, 1790–1798 (2014).

    Article  CAS  Google Scholar 

  22. Yoshida, K. et al. The landscape of somatic mutations in Down-syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    Article  CAS  Google Scholar 

  23. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  24. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  Google Scholar 

  25. Yuan, P. et al. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. Proc. Natl. Acad. Sci. USA 110, 18226–18231 (2013).

    Article  CAS  Google Scholar 

  26. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by co-targeting MEK and IGF-1R–PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  Google Scholar 

  27. Ong, C.-T. & Corces, V.G. CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246 (2014).

    Article  CAS  Google Scholar 

  28. Xiao, T., Wallace, J. & Felsenfeld, G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol. Cell. Biol. 31, 2174–2183 (2011).

    Article  CAS  Google Scholar 

  29. Ziebarth, J.D., Bhattacharya, A. & Cui, Y. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res. 41, D188–D194 (2013).

    Article  CAS  Google Scholar 

  30. Katainen, R. et al. CTCF–cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 818–821 (2015).

    Article  CAS  Google Scholar 

  31. Li, H. & Durbin, R. Fast and accurate short-read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  32. Li, H. et al. The sequence alignment–map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  33. Koboldt, D.C. et al. VarScan 2: somatic mutation and copy-number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  Google Scholar 

  34. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  35. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  36. Lin, W.M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    Article  CAS  Google Scholar 

  37. Shen, C.-H. et al. Phosphorylation of BRAF by AMPK impairs BRAF–KSR1 association and cell proliferation. Mol. Cell 52, 161–172 (2013).

    Article  CAS  Google Scholar 

  38. Kamata, T. et al. A critical function for BRAF at multiple stages of myelopoiesis. Blood 106, 833–840 (2005).

    Article  CAS  Google Scholar 

  39. Zheng, B. et al. Oncogenic BRAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol. Cell 33, 237–247 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Swanson, Y. Zhang and G. Zhao for critical comments on the manuscript. We also thank L. Chin (MD Anderson Cancer Center), M. Herlyn (Wistar Institute), C. Pritchard (University of Leicester) and J. Zippin (Weill Cornell Medical College) for providing cell lines. This work is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (D.E.F.), the V Foundation (B.Z.), the Harry J. Lloyd Charitable Trust (B.Z.), the Melanoma Research Alliance (B.Z.) and the US National Institutes of Health (NIH) grants P01 CA163222 (D.E.F.), R01 AR043369 (D.E.F.), R21 CA175907 (D.E.F.) and R01 CA166717 (B.Z.).

Author information

Authors and Affiliations

Authors

Contributions

C.-H.S., S.H.K., S.T., P.Y., L.C., M.L. and B.Z. designed experiments; C.-H.S., S.H.K., P.Y., L.C., S.T., M.L. and J.H.L. performed experiments; D.T.F., R.J.S. and K.T.F. provided patient samples; D.M. and D.E.F. generated and provided cell lines; D.T.F. and A.P. performed immunohistochemical and pathological analysis; L.G. performed computational analysis; all of the authors interpreted data and discussed results; and B.Z. wrote the paper with input from all of the authors.

Corresponding author

Correspondence to Bin Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–11 (PDF 3806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, CH., Kim, S., Trousil, S. et al. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nat Med 22, 1056–1061 (2016). https://doi.org/10.1038/nm.4155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing