NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages

Abstract

Altered metabolism has been implicated in the pathogenesis of inflammatory diseases. NADPH oxidase 4 (NOX4), a source of cellular superoxide anions, has multiple biological functions that may be of importance in inflammation and in the pathogenesis of human metabolic diseases, including diabetes. However, the mechanisms by which NOX4-dependent metabolic regulation affect the innate immune response remain unclear. Here we show that deficiency of NOX4 resulted in reduced expression of carnitine palmitoyltransferase 1A (CPT1A), which is a key mitochondrial enzyme in the fatty acid oxidation (FAO) pathway. The reduced FAO resulted in less activation of the nucleotide-binding domain, leucine-rich-repeat-containing receptor (NLR), pyrin-domain-containing 3 (NLRP3) inflammasome in human and mouse macrophages. In contrast, NOX4 deficiency did not inhibit the activation of the NLR family, CARD-domain-containing 4 (NLRC4), the NLRP1 or the absent in melanoma 2 (AIM2) inflammasomes. We also found that inhibition of FAO by etomoxir treatment suppressed NLRP3 inflammasome activation. Furthermore, Nox4-deficient mice showed substantial reduction in caspase-1 activation and in interleukin (IL)-1β and IL-18 production, and there was improved survival in a mouse model of NLRP3-mediated Streptococcus pneumoniae infection. The pharmacologic inhibition of NOX4 by either GKT137831, which is currently in phase 2 clinical trials, or VAS-2870 attenuated NLRP3 inflammasome activation. Our results suggest that NOX4-mediated FAO promotes NLRP3 inflammasome activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Deficiency of NOX4 suppresses NLRP3 inflammasome activation.
Figure 2: NOX4 regulates FAO during NLRP3 inflammasome activation.
Figure 3: NOX4 regulates CPT1A in NLRP3 inflammasome activation.
Figure 4: Inhibition of FAO suppresses NLRP3 inflammasome activation.
Figure 5: GKT137831 suppresses NLRP3 inflammasome activation.
Figure 6: Inhibition of NOX4 suppresses NLRP3 inflammasome activation.

References

  1. 1

    Sutterwala, F.S. et al. Critical role for NALP3 (CIAS1 or cryopyrin) in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Franchi, L., Eigenbrod, T., Muñoz-Planillo, R. & Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Wen, H. et al. Fatty acid–induced NLRP3–ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Youm, Y.H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Moon, J.S. et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12, 102–115 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Moon, J.S. et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest. 125, 665–680 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Carracedo, A., Cantley, L.C. & Pandolfi, P.P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Currie, E., Schulze, A., Zechner, R., Walther, T.C. & Farese, R.V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Rasmussen, B.B. et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase 1 activity and fat oxidation in human skeletal muscle. J. Clin. Invest. 110, 1687–1693 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    McGarry, J.D., Mills, S.E., Long, C.S. & Foster, D.W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase 1 in animal and human tissues. Demonstration of the presence of malonyl-CoA in nonhepatic tissues of the rat. Biochem. J. 214, 21–28 (1983).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Drummond, G.R., Selemidis, S., Griendling, K.K. & Sobey, C.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 10, 453–471 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Hecker, L. et al. NADPH oxidase 4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Weyemi, U. et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31, 1117–1129 (2012).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Geiszt, M., Kopp, J.B., Várnai, P. & Leto, T.L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010–8014 (2000).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Goettsch, C. et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J. Clin. Invest. 123, 4731–4738 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Cheng, G., Cao, Z., Xu, X., van Meir, E.G. & Lambeth, J.D. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4 and Nox5. Gene 269, 131–140 (2001).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Block, K., Gorin, Y. & Abboud, H.E. Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. USA 106, 14385–14390 (2009).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Kuroda, J. et al. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. USA 107, 15565–15570 (2010).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Gorin, Y. et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 280, 39616–39626 (2005).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Witzenrath, M. et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol. 187, 434–440 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    McNeela, E.A. et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6, e1001191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44, 491–501 (2011).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Susztak, K., Ciccone, E., McCue, P., Sharma, K. & Böttinger, E.P. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2, e45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Huynh, F.K., Green, M.F., Koves, T.R. & Hirschey, M.D. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Methods Enzymol. 542, 391–405 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Mensink, R.P. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 40, 1201–1205 (2005).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Pandolfi, P.P. et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209–5215 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Yu, J.W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 13, 236–249 (2006).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    McGarry, J.D. & Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244, 1–14 (1997).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Varanasi, U. et al. Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis and chromosomal localization. Proc. Natl. Acad. Sci. USA 91, 3107–3111 (1994).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Ashcroft, F.M. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Trnka, J., Blaikie, F.H., Logan, A., Smith, R.A. & Murphy, M.P. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic. Res. 43, 4–12 (2009).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Tutwiler, G.F., Brentzel, H.J. & Kiorpes, T.C. Inhibition of mitochondrial carnitine palmitoyl transferase A in vivo with methyl 2-tetradecylglycidate (methyl palmoxirate) and its relationship to ketonemia and glycemia. Proc. Soc. Exp. Biol. Med. 178, 288–296 (1985).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Boden, G. & Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta cell dysfunction. Eur. J. Clin. Invest. 32 (Suppl. 3), 14–23 (2002).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Karpe, F., Dickmann, J.R. & Frayn, K.N. Fatty acids, obesity and insulin resistance: time for a re-evaluation. Diabetes 60, 2441–2449 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Choi, A.M. & Nakahira, K. Dampening insulin signaling by an NLRP3 'meta-flammasome'. Nat. Immunol. 12, 379–380 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Mihaylova, M.M. & Shaw, R.J. The AMPK signaling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Wanders, R.J., Ruiter, J.P., IJLst, L., Waterham, H.R. & Houten, S.M. The enzymology of mitochondrial fatty acid β-oxidation and its application to follow-up analysis of positive neonatal-screening results. J. Inherit. Metab. Dis. 33, 479–494 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Herrero, L. et al. Alteration of the malonyl-CoA–carnitine palmitoyltransferase 1 interaction in the beta cell impairs glucose-induced insulin secretion. Diabetes 54, 462–471 (2005).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Nolan, C.J., Madiraju, M.S., Delghingaro-Augusto, V., Peyot, M.L. & Prentki, M. Fatty acid signaling in the beta cell and insulin secretion. Diabetes 55 (Suppl. 2), S16–S23 (2006).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Roden, M. Mechanisms of disease: hepatic steatosis in type 2 diabetes—pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2, 335–348 (2006).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Brookheart, R.T., Michel, C.I. & Schaffer, J.E. As a matter of fat. Cell Metab. 10, 9–12 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lagathu, C. et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162–2173 (2006).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Mandrup-Poulsen, T., Pickersgill, L. & Donath, M.Y. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158–166 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Coll, R.C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Carnesecchi, S. et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal. 15, 607–619 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grant no. P01 HL108801, R01 HL079904, R01 HL055330; all to A.M.K.C.). We thank E. Finkelsztein for technical assistance.

Author information

Affiliations

Authors

Contributions

J.-S.M., K.N. and A.M.K.C. conceived the study with assistance from S.W.R.; J.-S.M., K.-P.C., G.M.D., M.J.K., M.A.P. and K.T.R. contributed the in vitro experiments; J.-S.M. and H.S.-D. contributed the in vivo experiments; J.-S.M. contributed all in vitro and in vivo experiments; K.-P.C. contributed the experiments for ASC oligomerization and ASC speck formation; M.A.P. contributed the experiments for human subjects; G.M.D. contributed the experiments for the FAO assay; M.J.K. and K.T.R. contributed the experiments for cytokine analysis; J.-S.M., J.-H.Y., K.N., S.W.R. and A.M.K.C. wrote the paper; and A.M.K.C. supervised the entire project.

Corresponding author

Correspondence to Augustine M K Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 7666 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, J., Nakahira, K., Chung, K. et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 22, 1002–1012 (2016). https://doi.org/10.1038/nm.4153

Download citation

Further reading