Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice

Abstract

The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules that have mRNA expression profiles similar to that of celastrol, a naturally occurring compound that we previously identified as a leptin sensitizer. Through this process, we identified another naturally occurring compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin-A treatment of mice with diet-induced obesity (DIO) resulted in a 20–25% reduction of body weight, while also decreasing obesity-associated abnormalities, including hepatic steatosis. Withaferin-A treatment marginally affected the body weight of ob/ob and db/db mice, both of which are deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism that occur independently of its leptin-sensitizing effect. Our results show that the metabolic abnormalities of DIO can be mitigated by sensitizing animals to endogenous leptin, and they indicate that withaferin A is a potential leptin sensitizer with additional antidiabetic actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of withaferin A as sharing a similar gene expression profile with celastrol.
Figure 2: Withaferin A reduces the body weight and food intake of mice with DIO but not that of lean mice.
Figure 3: Leptin-signaling-deficient mice are resistant to the weight-reducing effect of withaferin A.
Figure 4: Withaferin A increases leptin sensitivity in the hypothalamus of mice with DIO.
Figure 5: Withaferin A reduces ER stress.
Figure 6: Withaferin A's beneficial effect on metabolic homeostasis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wang, Y., Beydoun, M.A., Liang, L., Caballero, B. & Kumanyika, S.K. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 16, 2323–2330 (2008).

    Article  Google Scholar 

  2. Olshansky, S.J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Rodgers, R.J., Tschöp, M.H. & Wilding, J.P. Anti-obesity drugs: past, present and future. Dis. Model. Mech. 5, 621–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalamaga, M. et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 18, 29–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Myers, M.G. Jr. et al. Challenges and opportunities of defining clinical leptin resistance. Cell Metab. 15, 150–156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dietrich, M.O. & Horvath, T.L. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, J.M. Modern science versus the stigma of obesity. Nat. Med. 10, 563–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homolog. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Frederich, R.C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Considine, R.V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Heymsfield, S.B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J. Am. Med. Assoc. 282, 1568–1575 (1999).

    Article  CAS  Google Scholar 

  14. Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Howard, J.K. et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat. Med. 10, 734–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Loh, K. et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 14, 684–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horvath, T.L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. USA 107, 14875–14880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich, M.O., Liu, Z.W. & Horvath, T.L. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diano, S. et al. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 17, 1121–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long, L., Toda, C., Jeong, J.K., Horvath, T.L. & Diano, S. PPAR-γ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. J. Clin. Invest. 124, 4017–4027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren, D., Li, M., Duan, C. & Rui, L. Identification of SH2-B as a key regulator of leptin sensitivity, energy balance and body weight in mice. Cell Metab. 2, 95–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Park, S.W. & Ozcan, U. Potential for therapeutic manipulation of the UPR in disease. Semin. Immunopathol. 35, 351–373 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. & Ozcan, U. Unfolded protein response signaling and metabolic diseases. J. Biol. Chem. 289, 1203–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 306, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ramírez, S. & Claret, M. Hypothalamic ER stress: a bridge between leptin resistance and obesity. FEBS Lett. 589, 1678–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Won, J.C. et al. Central administration of an endoplasmic reticulum stress inducer inhibits the anorexigenic effects of leptin and insulin. Obesity (Silver Spring) 17, 1861–1865 (2009).

    Article  CAS  Google Scholar 

  31. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Williams, K.W. et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J., Lee, J., Salazar Hernandez, M.A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mirjalili, M.H., Moyano, E., Bonfill, M., Cusido, R.M. & Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14, 2373–2393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Winters, M. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern. Med. Rev. 11, 269–277 (2006).

    PubMed  Google Scholar 

  38. Mishra, L.C., Singh, B.B. & Dagenais, S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern. Med. Rev. 5, 334–346 (2000).

    CAS  PubMed  Google Scholar 

  39. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Van Heek, M. et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest. 99, 385–390 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halaas, J.L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P. & Baskin, D.G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fei, H. et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hâkansson, M.L., Brown, H., Ghilardi, N., Skoda, R.C. & Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ozcan, U. et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29, 541–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, Y. et al. Withaferin A targets heat-shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 79, 542–551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neckers, L. Heat-shock protein 90: the cancer chaperone. J. Biosci. 32, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Kaileh, M. et al. Withaferin a strongly elicits IκB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J. Biol. Chem. 282, 4253–4264 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Harris, R.B., Kelso, E.W., Flatt, W.P., Bartness, T.J. & Grill, H.J. Energy expenditure and body composition of chronically maintained decerebrate rats in the fed and fasted condition. Endocrinology 147, 1365–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Arch, J.R., Stock, M.J. & Trayhurn, P. Leptin resistance in obese humans: does it exist and what does it mean? Int. J. Obes. Relat. Metab. Disord. 22, 1159–1163 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ma, X. et al. Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1–PGC-1α transcriptional axis. Cell Metab. 22, 695–708 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Denver, R.J., Bonett, R.M. & Boorse, G.C. Evolution of leptin structure and function. Neuroendocrinology 94, 21–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1-null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Zavacki, A.M. et al. Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 146, 1568–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kaplan, M.M. Subcellular alterations causing reduced hepatic thyroxine-5′-monodeiodinase activity in fasted fats. Endocrinology 104, 58–64 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate M. White for his time spent on critical reading of our manuscript and for his contributions and suggestions. We thank S. Cabi and I. Cakir for their initial experimental contributions to this work. We also thank S. Mert and B. Akosman for their help on some of the experiments, and S. Huang and M. Mulcahey-Maynard for measurement of serum T3 levels. TSC+/+ and TSC−/− MEFs were kindly provided by D. Kwiatkowski (Dana-Farber Cancer Institute). This work was mainly supported by funds provided to U.O. from the Department of Medicine, Boston Children's Hospital, and also by grant R01DK098496 (U.O.) from the US National Institutes of Health and American Diabetes Association Career Development grant #7-09-CD-10 (U.O.).

Author information

Authors and Affiliations

Authors

Contributions

U.O. came up with the idea to investigate compounds that have similar gene expression to celastrol by using CMAP. U.O. directed this and subsequent analyses and picked withaferin A as a candidate for the treatment of type 2 diabetes and obesity. J. Lee, J. Liu, X.F., M.A.S.H., P.M., D.I. and J.W.C. performed experiments under the direction of U.O. U.O., J. Lee, J. Liu and X.F. analyzed data. U.O. wrote the manuscript, and J. Lee, J. Liu and X.F. were involved in the writing and preparation of the manuscript.

Corresponding author

Correspondence to Umut Ozcan.

Ethics declarations

Competing interests

U.O. is a scientific founder, shareholder, and scientific advisory board and board of directors member of ERX Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1870 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Liu, J., Feng, X. et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat Med 22, 1023–1032 (2016). https://doi.org/10.1038/nm.4145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4145

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research