Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The microbiome in early life: implications for health outcomes

Abstract

Recent studies have characterized how host genetics, prenatal environment and delivery mode can shape the newborn microbiome at birth. Following this, postnatal factors, such as antibiotic treatment, diet or environmental exposure, further modulate the development of the infant's microbiome and immune system, and exposure to a variety of microbial organisms during early life has long been hypothesized to exert a protective effect in the newborn. Furthermore, epidemiological studies have shown that factors that alter bacterial communities in infants during childhood increase the risk for several diseases, highlighting the importance of understanding early-life microbiome composition. In this review, we describe how prenatal and postnatal factors shape the development of both the microbiome and the immune system. We also discuss the prospects of microbiome-mediated therapeutics and the need for more effective approaches that can reconfigure bacterial communities from pathogenic to homeostatic configurations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors shaping the neonatal microbiome.

Marina Corral Spence/Nature Publishing Group

Figure 2: Long-lasting effects of early-life interactions between the microbiome and the gut immune system.

Marina Corral Spence/Nature Publishing Group

Figure 3: Microbial therapeutics throughout the course of disease.

Marina Corral Spence/Nature Publishing Group

References

  1. Satokari, R., Grönroos, T., Laitinen, K., Salminen, S. & Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 48, 8–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra265 (2014).

    Google Scholar 

  3. Oh, K.J. et al. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J. Perinat. Med. 38, 261–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiGiulio, D.B. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steel, J.H. et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr. Res. 57, 404–411 (2005).

    Article  PubMed  Google Scholar 

  6. Jiménez, E. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Jiménez, E. et al. Is meconium from healthy newborns actually sterile? Res. Microbiol. 159, 187–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, J. et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One 8, e78257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Romero, R., Dey, S.K. & Fisher, S.J. Preterm labor: one syndrome, many causes. Science 345, 760–765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldenberg, R.L., Culhane, J.F., Iams, J.D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kliman, H.J. Comment on “the placenta harbors a unique microbiome”. Sci. Transl. Med. 6, 254le4 (2014).

    Article  PubMed  Google Scholar 

  12. Boggess, K.A. et al. Bacteremia shortly after placental separation during cesarean delivery. Obstet. Gynecol. 87, 779–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Salter, S.J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Durack, D.T. Prevention of infective endocarditis. N. Engl. J. Med. 332, 38–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A. & Brown, P.O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bennet, R. & Nord, C.E. Development of the fecal anaerobic microflora after cesarean section and treatment with antibiotics in newborn infants. Infection 15, 332–336 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Dominguez-Bello, M.G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Dominguez-Bello, M.G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koenig, J.E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  21. Lim, E.S. et al. Early-life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakobsson, H.E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced TH1 responses in infants delivered by cesarean section. Gut 63, 559–566 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Kabeerdoss, J. et al. Development of the gut microbiota in southern Indian infants from birth to 6 months: a molecular analysis. J. Nutr. Sci. 2, e18 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Sevelsted, A., Stokholm, J., Bønnelykke, K. & Bisgaard, H. Cesarean section and chronic immune disorders. Pediatrics 135, e92–e98 (2015).

    Article  PubMed  Google Scholar 

  26. Huh, S.Y. et al. Delivery by cesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch. Dis. Child. 97, 610–616 (2012).

    Article  PubMed  Google Scholar 

  27. Eggesbø, M., Botten, G., Stigum, H., Nafstad, P. & Magnus, P. Is delivery by cesarean section a risk factor for food allergy? J. Allergy Clin. Immunol. 112, 420–426 (2003).

    Article  PubMed  Google Scholar 

  28. Zhou, X. et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol. Med. Microbiol. 58, 169–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4680–4687 (2011).

    Article  PubMed  Google Scholar 

  31. Romero, R. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of nonpregnant women. Microbiome 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Walther-António, M.R. et al. Pregnancy's stronghold on the vaginal microbiome. PLoS One 9, e98514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goplerud, C.P., Ohm, M.J. & Galask, R.P. Aerobic and anaerobic flora of the cervix during pregnancy and the puerperium. Am. J. Obstet. Gynecol. 126, 858–868 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. Vásquez, A., Jakobsson, T., Ahrné, S., Forsum, U. & Molin, G. Vaginal lactobacillus flora of healthy Swedish women. J. Clin. Microbiol. 40, 2746–2749 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Redondo-Lopez, V., Cook, R.L. & Sobel, J.D. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev. Infect. Dis. 12, 856–872 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Witkin, S.S. & Ledger, W.J. Complexities of the uniquely human vagina. Sci. Transl. Med. 4, 132fs11 (2012).

    Article  PubMed  Google Scholar 

  37. MacIntyre, D.A. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5, 8988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fettweis, J.M. et al. Differences in vaginal microbiome in African-American women versus women of European ancestry. Microbiology 160, 2272–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hicks, L.A. et al. US outpatient antibiotic-prescribing variation according to geography, patient population and provider specialty in 2011. Clin. Infect. Dis. 60, 1308–1316 (2015).

    PubMed  Google Scholar 

  40. Hersh, A.L., Shapiro, D.J., Pavia, A.T. & Shah, S.S. Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics 128, 1053–1061 (2011).

    Article  PubMed  Google Scholar 

  41. Arrieta, M.C., Stiemsma, L.T., Amenyogbe, N., Brown, E.M. & Finlay, B. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kozyrskyj, A.L., Ernst, P. & Becker, A.B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  43. Risnes, K.R., Belanger, K., Murk, W. & Bracken, M.B. Antibiotic exposure by 6 months, and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).

    Article  PubMed  Google Scholar 

  44. Hoskin-Parr, L., Teyhan, A., Blocker, A. & Henderson, A.J. Antibiotic exposure in the first 2 years of life and development of asthma and other allergic diseases by 7.5 years: a dose-dependent relationship. Pediatr. Allergy Immunol. 24, 762–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bailey, L.C. et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 168, 1063–1069 (2014).

    Article  PubMed  Google Scholar 

  46. Mikkelsen, K.H., Knop, F.K., Frost, M., Hallas, J. & Pottegård, A. Use of antibiotics and risk of type 2 diabetes: a population-based case-control study. J. Clin. Endocrinol. Metab. 100, 3633–3640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Metsälä, J. et al. Mother's and offspring's use of antibiotics, and infant allergy to cow's milk. Epidemiology 24, 303–309 (2013).

    Article  PubMed  Google Scholar 

  48. Kronman, M.P., Zaoutis, T.E., Haynes, K., Feng, R. & Coffin, S.E. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130, e794–e803 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Örtqvist, A.K. et al. Antibiotics in fetal and early life, and subsequent childhood asthma: nationwide population-based study with sibling analysis. Br. Med. J. 349, g6979 (2014).

    Article  CAS  Google Scholar 

  50. Semic-Jusufagic, A. et al. Assessing the association of early-life antibiotic prescription with asthma exacerbations, impaired antiviral immunity and genetic variants in 17q21: a population-based birth-cohort study. Lancet Respir. Med. 2, 621–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 6, e01693–e15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cox, L.M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nobel, Y.R. et al. Metabolic and metagenomic outcomes from early-life-pulsed antibiotic treatment. Nat. Commun. 6, 7486 (2015).

    Article  PubMed  Google Scholar 

  55. Ivanov, I.I. et al. Induction of intestinal TH17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stefka, A.T. et al. Commensal bacteria protect against food-allergen sensitization. Proc. Natl. Acad. Sci. USA 111, 13145–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Noverr, M.C., Falkowski, N.R., McDonald, R.A., McKenzie, A.N. & Huffnagle, G.B. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen and interleukin-13. Infect. Immun. 73, 30–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gonzalez-Perez, G. et al. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J. Immunol. 196, 3768–3779 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Beura, L.K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sadeharju, K. et al. Maternal antibodies in breast milk protect the child from enterovirus infections. Pediatrics 119, 941–946 (2007).

    Article  PubMed  Google Scholar 

  61. WHO Collaborative Study Team on the Role of Breast-feeding on the Prevention of Infant Mortality. Effect of breast-feeding on infant and child mortality due to infectious diseases in less developed countries: a pooled analysis. Lancet 355, 451–455 (2000).

  62. Harder, T., Bergmann, R., Kallischnigg, G. & Plagemann, A. Duration of breast-feeding and risk of overweight: a meta-analysis. Am. J. Epidemiol. 162, 397–403 (2005).

    Article  PubMed  Google Scholar 

  63. Weng, S.F., Redsell, S.A., Swift, J.A., Yang, M. & Glazebrook, C.P. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch. Dis. Child. 97, 1019–1026 (2012).

    Article  PubMed  Google Scholar 

  64. Greer, F.R., Sicherer, S.H. & Burks, A.W. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breast-feeding, timing of introduction of complementary foods and hydrolyzed formulas. Pediatrics 121, 183–191 (2008).

    Article  PubMed  Google Scholar 

  65. Schwarz, E.B. et al. Duration of lactation and risk factors for maternal cardiovascular disease. Obstet. Gynecol. 113, 974–982 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stuebe, A.M., Rich-Edwards, J.W., Willett, W.C., Manson, J.E. & Michels, K.B. Duration of lactation and incidence of type 2 diabetes. J. Am. Med. Assoc. 294, 2601–2610 (2005).

    Article  CAS  Google Scholar 

  67. Guilbert, T.W., Stern, D.A., Morgan, W.J., Martinez, F.D. & Wright, A.L. Effect of breast-feeding on lung function in childhood, and modulation by maternal asthma and atopy. Am. J. Respir. Crit. Care Med. 176, 843–848 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dogaru, C.M. et al. Breast-feeding and lung function at school age: does maternal asthma modify the effect? Am. J. Respir. Crit. Care Med. 185, 874–880 (2012).

    Article  PubMed  Google Scholar 

  69. Brandtzaeg, P. The mucosal immune system and its integration with the mammary glands. J. Pediatr. 156 Suppl, S8–S15 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 77, 1537S–1543S (2003).

    Article  PubMed  Google Scholar 

  71. Yoshioka, H., Iseki, K. & Fujita, K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72, 317–321 (1983).

    CAS  PubMed  Google Scholar 

  72. Engfer, M.B., Stahl, B., Finke, B., Sawatzki, G. & Daniel, H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71, 1589–1596 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Martín, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143, 754–758 (2003).

    Article  PubMed  Google Scholar 

  74. Heikkilä, M.P. & Saris, P.E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Pantoja-Feliciano, I.G. et al. Biphasic assembly of the murine intestinal microbiota during early development. ISME J. 7, 1112–1115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Braegger, C. et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 52, 238–250 (2011).

    Article  PubMed  Google Scholar 

  77. Bergmann, H., Rodríguez, J.M., Salminen, S. & Szajewska, H. Probiotics in human milk and probiotic supplementation in infant nutrition: a workshop report. Br. J. Nutr. 112, 1119–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Deshpande, G., Rao, S. & Patole, S. Probiotics in neonatal intensive care—back to the future. Aust. N. Z. J. Obstet. Gynaecol. 55, 210–217 (2015).

    Article  PubMed  Google Scholar 

  79. Cuello-Garcia, C.A. et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J. Allergy Clin. Immunol. 136, 952–961 (2015).

    Article  PubMed  Google Scholar 

  80. Panduru, M., Panduru, N.M., Sălăvăstru, C.M. & Tiplica, G.S. Probiotics and primary prevention of atopic dermatitis: a meta-analysis of randomized controlled studies. J. Eur. Acad. Dermatol. Venereol. 29, 232–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Foolad, N., Brezinski, E.A., Chase, E.P. & Armstrong, A.W. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula and fatty acids. JAMA Dermatol. 149, 350–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Doege, K. et al. Impact of maternal supplementation with probiotics during pregnancy on atopic eczema in childhood—a meta-analysis. Br. J. Nutr. 107, 1–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, S.-O. et al. Effects of probiotics for the treatment of atopic dermatitis: a meta-analysis of randomized controlled trials. Ann. Allergy Asthma Immunol. 113, 217–226 (2014).

    Article  PubMed  Google Scholar 

  84. Pelucchi, C. et al. Probiotics supplementation during pregnancy or infancy for the prevention of atopic dermatitis: a meta-analysis. Epidemiology 23, 402–414 (2012).

    Article  PubMed  Google Scholar 

  85. Elazab, N. et al. Probiotic administration in early life, atopy and asthma: a meta-analysis of clinical trials. Pediatrics 132, e666–e676 (2013).

    Article  PubMed  Google Scholar 

  86. Savino, F. et al. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 126, e526–e533 (2010).

    Article  PubMed  Google Scholar 

  87. Brunser, O. et al. Effects of probiotic- or prebiotic-supplemented milk formulas on fecal microbiota composition of infants. Asia Pac. J. Clin. Nutr. 15, 368–376 (2006).

    CAS  PubMed  Google Scholar 

  88. Mah, K.W. et al. Effect of a milk formula containing probiotics on the fecal microbiota of Asian infants at risk of atopic diseases. Pediatr. Res. 62, 674–679 (2007).

    Article  PubMed  Google Scholar 

  89. Maldonado, J. et al. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J. Pediatr. Gastroenterol. Nutr. 54, 55–61 (2012).

    Article  PubMed  Google Scholar 

  90. Vandenplas, Y., Zakharova, I. & Dmitrieva, Y. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br. J. Nutr. 113, 1339–1344 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Krebs, N.F. et al. Effects of different complementary feeding regimens on iron status and enteric microbiota in breast-fed infants. J. Pediatr. 163, 416–423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Andersen, A.D., Mølbak, L., Michaelsen, K.F. & Lauritzen, L. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J. Pediatr. Gastroenterol. Nutr. 53, 303–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Zimmermann, M.B. et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. Am. J. Clin. Nutr. 92, 1406–1415 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Clemente, J.C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Flores, G.E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hesselmar, B. et al. Pacifier cleaning practices and risk of allergy development. Pediatrics 131, e1829–e1837 (2013).

    Article  PubMed  Google Scholar 

  97. Song, S.J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Faith, J.J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Virtanen, S.M. et al. Microbial exposure in infancy and subsequent appearance of type 1 diabetes mellitus–associated autoantibodies: a cohort study. JAMA Pediatr. 168, 755–763 (2014).

    Article  PubMed  Google Scholar 

  100. Ownby, D.R., Johnson, C.C. & Peterson, E.L. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. J. Am. Med. Assoc. 288, 963–972 (2002).

    Article  Google Scholar 

  101. Fujimura, K.E. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. USA 111, 805–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Sjögren, Y.M., Jenmalm, M.C., Böttcher, M.F., Björkstén, B. & Sverremark-Ekström, E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy 39, 518–526 (2009).

    Article  PubMed  Google Scholar 

  103. Haahtela, T. et al. Hunt for the origin of allergy—comparing the Finnish and Russian Karelia. Clin. Exp. Allergy 45, 891–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. von Hertzen, L. et al. Microbial content of drinking water in Finnish and Russian Karelia—implications for atopy prevalence. Allergy 62, 288–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Normand, A.C. et al. Airborne cultivable microflora and microbial transfer in farm buildings and rural dwellings. Occup. Environ. Med. 68, 849–855 (2011).

    Article  PubMed  Google Scholar 

  106. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index, and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Herbert, A. et al. A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Karlsson, F.H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goodrich, J.K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chervonsky, A.V. Influence of microbial environment on autoimmunity. Nat. Immunol. 11, 28–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ajslev, T.A., Andersen, C.S., Gamborg, M., Sørensen, T.I. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, prepregnancy weight and early administration of antibiotics. Int. J. Obes. 35, 522–529 (2011).

    Article  CAS  Google Scholar 

  116. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nestle, F.O., Kaplan, D.H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Adkins, B. & Du, R.Q. Newborn mice develop balanced TH1 and TH2 primary effector responses in vivo but are biased to TH2 secondary responses. J. Immunol. 160, 4217–4224 (1998).

    CAS  PubMed  Google Scholar 

  119. Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  120. Liu, A.H. & Leung, D.Y. Renaissance of the hygiene hypothesis. J. Allergy Clin. Immunol. 117, 1063–1066 (2006).

    Article  PubMed  Google Scholar 

  121. Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arrieta, M.C. et al. Early-infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Langille, M.G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bunyavanich, S. et al. Early-life gut microbiome composition is associated with milk allergy resolution. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2016.03.041 (2016).

  128. Smith, M.I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Noval Rivas, M. et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131, 201–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Muniyappa, P., Gulati, R., Mohr, F. & Hupertz, V. Use and safety of rifaximin in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 49, 400–404 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Turner, D., Levine, A., Kolho, K.L., Shaoul, R. & Ledder, O. Combination of oral antibiotics may be effective in severe pediatric ulcerative colitis: a preliminary report. J. Crohn's Colitis 8, 1464–1470 (2014).

    Article  Google Scholar 

  132. Cotten, C.M. et al.; NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low-birth-weight infants. Pediatrics 123, 58–66 (2009).

    Article  PubMed  Google Scholar 

  133. Faden, D. & Faden, H.S. The high rate of adverse drug events in children receiving prolonged outpatient parenteral antibiotic therapy for osteomyelitis. Pediatr. Infect. Dis. J. 28, 539–541 (2009).

    Article  PubMed  Google Scholar 

  134. Buchanan, E. et al. The use of exclusive enteral nutrition for induction of remission in children with Crohn's disease demonstrates that disease phenotype does not influence clinical remission. Aliment. Pharmacol. Ther. 30, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Quince, C. et al. Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110, 1718–1729, quiz 1730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Khoruts, A., Dicksved, J., Jansson, J.K. & Sadowsky, M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile–associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  137. Youngster, I. et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. J. Am. Med. Assoc. 312, 1772–1778 (2014).

    Article  CAS  Google Scholar 

  138. Kunde, S. et al. Safety, tolerability and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J. Pediatr. Gastroenterol. Nutr. 56, 597–601 (2013).

    Article  PubMed  Google Scholar 

  139. Grinspan, A.M. & Kelly, C.R. Fecal microbiota transplantation for ulcerative colitis: not just yet. Gastroenterology 149, 15–18 (2015).

    Article  PubMed  Google Scholar 

  140. Martinez, F.D. The human microbiome. Early-life determinant of health outcomes. Ann. Am. Thorac. Soc. 11 Suppl 1, S7–S12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Furusawa, Y. et al. Commensal-microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Sander, L.E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Franzosa, E.A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 111, E2329–E2338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sellitto, M. et al. Proof of concept of microbiome–metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One 7, e33387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stewart, C.J. et al. Preterm gut microbiota and metabolome following discharge from intensive care. Sci. Rep. 5, 17141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kersulyte, D. et al. Differences in genotypes of Helicobacter pylori from different human populations. J. Bacteriol. 182, 3210–3218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Palm, N.W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shen, N. & Clemente, J.C. Engineering the microbiome: a novel approach to immunotherapy for allergic and immune diseases. Curr. Allergy Asthma Rep. 15, 39 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Saari, A., Virta, L.J., Sankilampi, U., Dunkel, L. & Saxen, H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135, 617–626 (2015).

    Article  PubMed  Google Scholar 

  151. Schwartz, B.S. et al. Antibiotic use and childhood body mass index trajectory. Int. J. Obes. (Lond) 40, 615–621 (2016).

    Article  CAS  Google Scholar 

  152. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  153. Luo, C. et al. ConStrains identifies microbial strains in metagenomic data sets. Nat. Biotechnol. 33, 1045–1052 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cleary, B. et al. Detection of low-abundance bacterial strains in metagenomic data sets by eigengenome partitioning. Nat. Biotechnol. 33, 1053–1060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Maurice, C.F., Haiser, H.J. & Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Peris-Bondia, F., Latorre, A., Artacho, A., Moya, A. & D'Auria, G. The active human gut microbiota differs from the total microbiota. PLoS One 6, e22448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghannoum, M.A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gaitanis, G., Magiatis, P., Hantschke, M., Bassukas, I.D. & Velegraki, A. The Malassezia genus in skin and systemic diseases. Clin. Microbiol. Rev. 25, 106–141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chang, F.Y. et al. Analysis of the serum levels of fungi-specific immunoglobulin E in patients with allergic diseases. Int. Arch. Allergy Immunol. 154, 49–56 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.C.C. was supported by the SUCCESS philanthropic grant (GCO14-0560) and by the Crohn's and Colitis Foundation of America (CCFA) (362048). We thank J.-F. Colombel for suggestions on Figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose C Clemente.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamburini, S., Shen, N., Wu, H. et al. The microbiome in early life: implications for health outcomes. Nat Med 22, 713–722 (2016). https://doi.org/10.1038/nm.4142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing