Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting CBLB as a potential therapeutic approach for disseminated candidiasis

Abstract

Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb−/− mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CBLB inhibits pro-inflammatory cytokine production by macrophages after infection with C. albicans yeast cells or hyphae, and A. fumigatus conidia.
Figure 2: CBLB associates with dectin-1 and dectin-2 in macrophages after infection with C. albicans yeast cells or hyphae.
Figure 3: CBLB targets dectin-1 and dectin-2 for polyubiquitination and subsequent degradation in the lysosome.
Figure 4: Loss of CBLB impairs dectin-1 and dectin-2 internalization and their downregulation at the cell surface.
Figure 5: Introducing a dectin-1 or dectin-2 deficiency, or a double deficiency, into Cblb−/− mice renders Cblb−/− mice susceptible to systemic C. albicans infection.
Figure 6: Systemic in vivo delivery of Cblb-specific siRNA into C57BL/6 mice protects them from lethal disseminated candidiasis.

Similar content being viewed by others

References

  1. Brown, G.D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    PubMed  Google Scholar 

  2. Taylor, P.R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    CAS  PubMed  Google Scholar 

  3. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of TH17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    CAS  PubMed  Google Scholar 

  4. Zhu, L.L. et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    CAS  PubMed  Google Scholar 

  5. Hernández-Santos, N. & Gaffen, S.L. TH17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Liu, Q., Zhou, H., Langdon, W.Y. & Zhang, J. E3 ubiquitin ligase Cblb in innate and adaptive immunity. Cell Cycle 13, 1875–1884 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cblb. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  8. Jeon, M.S. et al. Essential role of the E3 ubiquitin ligase Cblb in T cell anergy induction. Immunity 21, 167–177 (2004).

    CAS  PubMed  Google Scholar 

  9. Qiao, G. et al. T cell receptor–induced NF-κB activation is negatively regulated by E3 ubiquitin ligase Cblb. Mol. Cell. Biol. 28, 2470–2480 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, D. et al. Cutting edge: Cblb: one of the key molecules tuning CD28- and CTLA-4-mediated T cell co-stimulation. J. Immunol. 173, 7135–7139 (2004).

    CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Cutting edge: regulation of T cell activation threshold by CD28 co-stimulation through targeting Cblb for ubiquitination. J. Immunol. 169, 2236–2240 (2002).

    CAS  PubMed  Google Scholar 

  12. Guo, H. et al. E3 ubiquitin ligase Cblb regulates Pten via Nedd4 in T cells independently of its ubiquitin ligase activity. Cell Rep. 1, 472–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiao, G. et al. T cell activation threshold regulated by E3 ubiquitin ligase Cblb determines fate of inducible regulatory T cells. J. Immunol. 191, 632–639 (2013).

    CAS  PubMed  Google Scholar 

  14. Qiao, G. et al. E3 ubiquitin ligase Cblb suppresses proallergic T cell development and allergic airway inflammation. Cell Rep. 6, 709–723 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, G.D. Dectin-1: a signaling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    CAS  PubMed  Google Scholar 

  16. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bahn, Y.S. & Sundstrom, P. CAP1, an adenylate cyclase-associated protein gene, regulates bud–hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 183, 3211–3223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hohl, T.M. & Feldmesser, M. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell 6, 1953–1963 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Steele, C. et al. The β-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42 (2005).

    PubMed  PubMed Central  Google Scholar 

  20. Gersuk, G.M., Underhill, D.M., Zhu, L. & Marr, K.A. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol. 176, 3717–3724 (2006).

    CAS  PubMed  Google Scholar 

  21. Rivera, A. et al. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J. Exp. Med. 208, 369–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hise, A.G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gringhuis, S.I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    CAS  PubMed  Google Scholar 

  24. Smeekens, S.P. et al. An anti-inflammatory property of Candida albicans β-glucan: induction of high levels of interleukin-1 receptor antagonist via a dectin-1–CR3 independent mechanism. Cytokine 71, 215–222 (2015).

    CAS  PubMed  Google Scholar 

  25. Kang, P.B. et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 202, 987–999 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rajaram, M.V. et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl. Acad. Sci. USA 108, 17408–17413 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, G.D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1–21 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hardison, S.E. & Brown, G.D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Osorio, F. & Reis e Sousa, C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34, 651–664 (2011).

    CAS  PubMed  Google Scholar 

  30. Kerscher, B., Willment, J.A. & Brown, G.D. The dectin-2 family of C-type lectin-like receptors: an update. Int. Immunol. 25, 271–277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyake, Y. et al. C-type lectin MCL is an FcR-γ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38, 1050–1062 (2013).

    CAS  PubMed  Google Scholar 

  32. Sato, K. et al. Dectin-2 is a pattern-recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    CAS  PubMed  Google Scholar 

  33. Sohn, H.W., Gu, H. & Pierce, S.K. Cblb negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J. Exp. Med. 197, 1511–1524 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kojo, S. et al. Mechanisms of NKT cell anergy induction involve Cblb-promoted monoubiquitination of CARMA1. Proc. Natl. Acad. Sci. USA 106, 17847–17851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oksvold, M.P., Dagger, S.A., Thien, C.B. & Langdon, W.Y. The Cblb RING finger domain has a limited role in regulating inflammatory cytokine production by IgE-activated mast cells. Mol. Immunol. 45, 925–936 (2008).

    CAS  PubMed  Google Scholar 

  36. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614 (2002).

    CAS  PubMed  Google Scholar 

  37. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5, 461–466 (2003).

    CAS  PubMed  Google Scholar 

  38. Lin, Q. et al. HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol. Cell. Biol. 30, 1541–1554 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hernanz-Falcón, P., Joffre, O., Williams, D.L. & Reis e Sousa, C. Internalization of dectin-1 terminates induction of inflammatory responses. Eur. J. Immunol. 39, 507–513 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Nicola, A.M., Casadevall, A. & Goldman, D.L. Fungal killing by mammalian phagocytic cells. Curr. Opin. Microbiol. 11, 313–317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, A.J., Haynes, K. & Quinn, J. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr. Opin. Microbiol. 12, 384–391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wells, C.A. et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    CAS  PubMed  Google Scholar 

  43. van de Veerdonk, F.L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009).

    CAS  PubMed  Google Scholar 

  44. Cambi, A. et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–538 (2003).

    CAS  PubMed  Google Scholar 

  45. Goodridge, H.S., Underhill, D.M. & Touret, N. Mechanisms of Fc receptor and dectin-1 activation for phagocytosis. Traffic 13, 1062–1071 (2012).

    CAS  PubMed  Google Scholar 

  46. Dupré-Crochet, S., Erard, M. & Nüβe, O. ROS production in phagocytes: why, when, and where? J. Leukoc. Biol. 94, 657–670 (2013).

    PubMed  Google Scholar 

  47. Underhill, D.M., Rossnagle, E., Lowell, C.A. & Simmons, R.M. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Swamydas, M., Luo, Y., Dorf, M.E. & Lionakis, M.S. Isolation of mouse neutrophils. Curr. Protoc. Immunol. 110, 3.20 (2015).

    Google Scholar 

  49. Wirnsberger, G. et al. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat. Genet. 46, 1028–1033 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.M. Penninger (University of Toronto) for providing Cblb−/− mice, Y. Iwakura (Tokyo University of Science) for providing Clec4n−/− mice, S. Lipkowitz (National Cancer Institute, US National Institutes of Health) for providing Cblb constructs, X. Lin (MD Anderson Cancer Center) for providing the antibody to mouse dectin-3 and Card9−/− bone marrow cells, P.R. Sundstrom (Dartmouth University) for providing the C. albicans cap1 mutant, and L.D. Chaves (University at Buffalo) for flow cytometric analysis of myeloid cells in the kidneys. We also thank A. Lovett-Racke (Ohio State University) for her advice on in vivo Cblb-knockdown experiments. This work was supported by the US National Institutes of Health (grants R01 AI090901, R01 AI123253, and R21 AI117547; all to J.Z.), the American Heart Association (AHA Great Rivers Associate Grant-in-Aid grant 16GRNT26990004; J.Z.), a start-up fund from the Ohio State University College of Medicine (J.Z.), and the Wellcome Trust (G.D.B.).

Author information

Authors and Affiliations

Authors

Contributions

Y.X. performed most of experiments and analyzed the data; J.T., H.G., Y.Z., R.T., S.O., Q.Z., and B.T.L. performed some in vitro and in vivo experiments; C.A.R. helped design the research, analyzed and interpreted the data, and edited the manuscript; M.V.S.R. performed experiments with human macrophages; L.S.S., M.V.S.R., and J.Z. designed human macrophage experiments and edited the manuscript; L.T. helped design kidney experiments and performed data analysis; G.D.B. provided Clec7a−/− mice; W.Y.L. provided CblbC373A knock-in mice and edited the manuscript; and J.Z. conceived and planned the research, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 8416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Tang, J., Guo, H. et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med 22, 906–914 (2016). https://doi.org/10.1038/nm.4141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing