Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity

Abstract

Immunomodulatory drugs (IMiDs), such as thalidomide and its derivatives lenalidomide and pomalidomide, are key treatment modalities for hematologic malignancies, particularly multiple myeloma (MM) and del(5q) myelodysplastic syndrome (MDS). Cereblon (CRBN), a substrate receptor of the CRL4 ubiquitin ligase complex, is the primary target by which IMiDs mediate anticancer and teratogenic effects. Here we identify a ubiquitin-independent physiological chaperone-like function of CRBN that promotes maturation of the basigin (BSG; also known as CD147) and solute carrier family 16 member 1 (SLC16A1; also known as MCT1) proteins. This process allows for the formation and activation of the CD147–MCT1 transmembrane complex, which promotes various biological functions, including angiogenesis, proliferation, invasion and lactate export. We found that IMiDs outcompete CRBN for binding to CD147 and MCT1, leading to destabilization of the CD147–MCT1 complex. Accordingly, IMiD-sensitive MM cells lose CD147 and MCT1 expression after being exposed to IMiDs, whereas IMiD-resistant cells retain their expression. Furthermore, del(5q) MDS cells have elevated CD147 expression, which is attenuated after IMiD treatment. Finally, we show that BSG (CD147) knockdown phenocopies the teratogenic effects of thalidomide exposure in zebrafish. These findings provide a common mechanistic framework to explain both the teratogenic and pleiotropic antitumor effects of IMiDs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: IMiDs compete with CRBN to destabilize CD147 and MCT1 in a ubiquitin-independent manner.
Figure 2: CRBN promotes maturation, complex assembly and membrane localization of CD147 and MCT1.
Figure 3: Lenalidomide has anti-myeloma activity via CD147 and MCT1 destabilization.
Figure 4: CD147 and MCT1 mediate tumor growth and determine the response of MM cells to IMiDs in vivo.
Figure 5: CD147 and MCT1 destabilization mediates IMiD activity in del(5q) MDS.
Figure 6: Thalidomide destabilizes CD147 to cause teratogenicity.

References

  1. Mellin, G.W. & Katzenstein, M. The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. N. Engl. J. Med. 267, 1238–1244 (1962).

    Article  CAS  PubMed  Google Scholar 

  2. Shortt, J., Hsu, A.K. & Johnstone, R.W. Thalidomide-analog biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene 32, 4191–4202 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Bartlett, J.B., Dredge, K. & Dalgleish, A.G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4, 314–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, Y.X. et al. Cereblon expression is required for the anti-myeloma activity of lenalidomide and pomalidomide. Blood 118, 4771–4779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez-Girona, A. et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26, 2326–2335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4–DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Fischer, E.S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chamberlain, P.P. et al. Structure of the human cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Jo, S., Lee, K.H., Song, S., Jung, Y.K. & Park, C.S. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channels in rat brain. J. Neurochem. 94, 1212–1224 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, K.M., Jo, S., Kim, H., Lee, J. & Park, C.S. Functional modulation of AMP-activated protein kinase by cereblon. Biochim. Biophys. Acta 1813, 448–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Iacono, K.T., Brown, A.L., Greene, M.I. & Saouaf, S.J. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp. Mol. Pathol. 83, 283–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirk, P. et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4, and facilitates their cell surface expression. EMBO J. 19, 3896–3904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parks, S.K., Chiche, J. & Pouysségur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Walters, D.K., Arendt, B.K. & Jelinek, D.F. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12, 3175–3183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arendt, B.K. et al. Increased expression of extracellular matrix metalloproteinase inducer (CD147) in multiple myeloma: role in regulation of myeloma cell proliferation. Leukemia 26, 2286–2296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, D. et al. The cyclophilin A–CD147 complex promotes the proliferation and homing of multiple-myeloma cells. Nat. Med. 21, 572–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple-myeloma cells. Science 343, 301–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Gandhi, A.K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, Y.X. et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 124, 536–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1-α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petzold, G., Fischer, E.S. & Thomä, N.H. Structural basis of lenalidomide-induced CK1-α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Chesi, M. et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120, 376–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, C.K., Baker, T.A. & Sauer, R.T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl. Acad. Sci. USA 96, 6678–6682 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gandhi, A.K. et al. Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity. Br. J. Haematol. 164, 233–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, Y. et al. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 65, 3193–3199 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Strupp, C., Hildebrandt, B., Germing, U., Haas, R. & Gattermann, N. Cytogenetic response to thalidomide treatment in three patients with myelodysplastic syndrome. Leukemia 17, 1200–1202 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kelaidi, C. et al. Treatment of myelodysplastic syndromes with 5q deletion before the lenalidomide era; the GFM experience with EPO and thalidomide. Leuk. Res. 32, 1049–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Fenaux, P. et al. A randomized phase 3 study of lenalidomide versus placebo in RBC-transfusion-dependent patients with low- or intermediate-1-risk myelodysplastic syndromes with del5q. Blood 118, 3765–3776 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. List, A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 355, 1456–1465 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Giagounidis, A. et al. Lenalidomide as a disease-modifying agent in patients with del(5q) myelodysplastic syndromes: linking mechanism of action to clinical outcomes. Ann. Hematol. 93, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Mahony, C. et al. Pomalidomide is nonteratogenic in chicken and zebrafish embryos and non-neurotoxic in vitro. Proc. Natl. Acad. Sci. USA 110, 12703–12708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassermann, F., Eichner, R. & Pagano, M. The ubiquitin–proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim. Biophys. Acta 1843, 150–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Kumar, S.K. et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 15, 1503–1512 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Roussel, M. et al. Front-line transplantation program with lenalidomide, bortezomib and dexamethasone combination as induction and consolidation, followed by lenalidomide maintenance in patients with multiple myeloma: a phase 2 study by the Intergroupe Francophone du Myélome. J. Clin. Oncol. 32, 2712–2717 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Richardson, P.G. et al. Lenalidomide, bortezomib and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116, 679–686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart, A.K. et al. Carfilzomib, lenalidomide and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 372, 142–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Harrison, J.S., Rameshwar, P., Chang, V. & Bandari, P. Oxygen saturation in the bone marrow of healthy volunteers. Blood 99, 394 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Staffler, G. et al. Selective inhibition of T cell activation via CD147 through novel modulation of lipid rafts. J. Immunol. 171, 1707–1714 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Hu, J. et al. Involvement of HAb18G–CD147 in T cell activation and immunological synapse formation. J. Cell. Mol. Med. 14, 2132–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Landskron, J. & Taskén, K. CD147 in regulatory T cells. Cell. Immunol. 282, 17–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Tehranchi, R. et al. Granulocyte-colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101, 1080–1086 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Gloeckner, C.J., Boldt, K., Schumacher, A., Roepman, R. & Ueffing, M. A novel tandem-affinity purification strategy for the efficient isolation and characterization of native protein complexes. Proteomics 7, 4228–4234 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Le Floch, R. et al. CD147 subunit of lactate–H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl. Acad. Sci. USA 108, 16663–16668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Birsoy, K. et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45, 104–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lo, Y.H., Ho, P.C. & Wang, S.C. Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A protein-mediated proteolysis. J. Biol. Chem. 287, 27148–27157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bassermann, F. et al. The Cdc14B–Cdh1–Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134, 256–267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernández-Sáiz, V. et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat. Cell Biol. 15, 72–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Baumann, U. et al. Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nat. Med. 20, 1401–1409 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Schmid, B. et al. Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction and reduced motor neuron axon outgrowth. Proc. Natl. Acad. Sci. USA 110, 4986–4991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kennedy, B.N. et al. Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Dev. Biol. 270, 336–349 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Buschbeck (Institute of Predictive and Personalized Medicine of Cancer, Barcelona) for the SKK-1 and SKM-1 cell lines, X. Bustelo (Centro de Investigacion del Cancer, Salamanca) for a EGFP–CD147 expression plasmid, Y. Cang (Life Science Institute, Zheijang University) for a CRBN expression construct, B. Ebert (Dana-Farber Cancer Institute) for an IKZF3 expression construct, A. Halestrap (School of Biochemistry, University of Bristol) for MCT1 expression constructs, H. Handa (Tokyo Institute of Technology, Japan) for an aliquot of mouse monoclonal CRBN-specific antibody, K. Kadomatsu (Department of Molecular Biology, Nagoya University) for CD147 expression constructs, W. Kaelin (Dana-Farber Cancer Institute) for CRISPR-based HEK293FT CBRN−/− cells and two clones of MM1.S CBRN−/− cells (T11, T21), D. Sabatini (Whitehead Institute) for a MCT1 and an shMCT1 construct, K. Stewart (Mayo Clinic) for a shCRBN plasmid, N. Thomä (Friedrich Miescher Institute for Biomedical Research, Basel) for a MEIS2 expression construct and purified CRL4CRBN protein, K. Tohyama (Kawasaki Medical School, Okayama) for the del(5q) MDS cell line MDSL, N. Thomä and E. Fisher for suggestions, R. Rojas for fish care and B. Nuscher for help with gel filtration chromatography. This work was supported by the Helmholtz cross-program topic 'Metabolic Dysfunction' (B.S.), a fellowship of the TU Munich (KKF # B10-13; to R.E.), grants from the José Carreras Leukemia Foundation (DJCLS R 14/16; to K.S.G.), the German Research Foundation (FOR2033 GO 713/2-1 and SFB 1243 (K.S.G.), SFB 824 (U.K.), KE 222/7-1 (U.K.), BA 2851/4-1 (F.B.) and SFB 1243 (F.B.)), the German Cancer Aid (#111051 (M.H.), #111305 (U.K.) and #111430 (F.B.)) and the Wilhelm Sander Stiftung (#2012.096.1; to F.B.). An application for a patent has been filed at the European Patent Office.

Author information

Authors and Affiliations

Authors

Contributions

R.E., M.H., V.F.-S. and F.B. conceived and designed the research; R.E., M.H. and V.F.-S. performed most of the experiments with crucial help from B.-S.T. and A.-M.K.; U.P., U.G. and K.S.G. provided MDS samples; C.L., S.K. and H.E. provided MM samples; K.S.G. and A.-K.G. performed FACS analyses; J.S. helped with the MM xenotransplant model; L.J. helped with the PET analysis; M.R. performed immunohistochemical analyses of tumors; F.v.B., B.S. and C.H. performed zebrafish experiments; S.L. and B.K. performed mass spectrometry; R.E., M.H., V.F.-S., F.v.B., A.-K.G., B.-S.T., S.L., U.K., C.P., B.S., C.H., K.S.G., B.K. and F.B. analyzed results; and F.B. coordinated this work and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Florian Bassermann.

Ethics declarations

Competing interests

F.B. and K.S.G. received honoraria and research funding from Celgene.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 2 (PDF 5435 kb)

Supplementary Table 1

Strep-Flag-Tandem affinity purified-CRBN-associated proteins identified by mass spectrometry analysis. (XLSX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eichner, R., Heider, M., Fernández-Sáiz, V. et al. Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat Med 22, 735–743 (2016). https://doi.org/10.1038/nm.4128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4128

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer