Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes

Abstract

Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide RNAi screen identifies determinants of LEN sensitivity in MDS.
Figure 2: GPR68 is a critical determinant of LEN sensitivity in MDS.
Figure 3: LEN sensitivity is determined by GPR68-mediated intracellular calcium flux.
Figure 4: Calcium-dependent calpain activity is required for LEN sensitivity.
Figure 5: Loss of CAST expression and increased CAPN1 expression confer sensitivity of MDS cells to LEN.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Pan, B. & Lentzsch, S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacol. Ther. 136, 56–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. List, A. et al. Myelodysplastic Syndrome-003 Study Investigators. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 355, 1456–1465 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Giagounidis, A.A. Lenalidomide for del(5q) and non-del(5q) myelodysplastic syndromes. Semin. Hematol. 49, 312–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Wei, S. et al. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 32, 1110–1120 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. McDaniel, J.M., Pinilla-Ibarz, J. & Epling-Burnette, P.K. Molecular action of lenalidomide in lymphocytes and hematologic malignancies. Adv. Hematol. 2012, 513702 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1-α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  9. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka, A. et al. Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia 24, 748–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tohyama, K. et al. A novel factor-dependent human myelodysplastic cell line, MDS92, contains hemopoietic cells of several lineages. Br. J. Haematol. 91, 795–799 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Pellagatti, A. et al. Lenalidomide inhibits the malignant clone and upregulates the SPARC gene mapping to the commonly deleted region in 5q– syndrome patients. Proc. Natl. Acad. Sci. USA 104, 11406–11411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Komurov, K., Dursun, S., Erdin, S. & Ram, P.T. NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics 13, 282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saft, L. et al. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica 99, 1041–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gandhi, A.K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Rebollo, A. & Schmitt, C. Ikaros, Aiolos, and Helios: transcription regulators and lymphoid malignancies. Immunol. Cell Biol. 81, 171–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbloom, K.R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Ludwig, M.G. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, W.C., Swietach, P., Vaughan-Jones, R.D., Ansorge, O. & Glitsch, M.D. Extracellular acidification elicits spatially and temporally distinct Ca2+ signals. Curr. Biol. 18, 781–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Rhyasen, G.W. et al. An MDS xenograft model utilizing a patient-derived cell line. Leukemia 28, 1142–1145 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Russell, J.L. et al. Regulated expression of pH-sensing G-protein-coupled receptor 68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem. Biol. 7, 1077–1083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frick, K.K., Krieger, N.S., Nehrke, K. & Bushinsky, D.A. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Miner. Res. 24, 305–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Clapham, D.E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Croall, D.E. & Ersfeld, K. The calpains: modular designs and functional diversity. Genome Biol. 8, 218 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sorimachi, H., Hata, S. & Ono, Y. Impact of genetic insights into calpain biology. J. Biochem. 150, 23–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Jerez, A. et al. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J. Clin. Oncol. 30, 1343–1349 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pellagatti, A. et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 108, 337–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, Y.X. et al. Identification of cereblon-binding proteins, and relationship with response and survival after IMiDs in multiple myeloma. Blood 124, 536–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Järås, M. et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J. Exp. Med. 211, 605–612 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jädersten, M. et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J. Clin. Oncol. 29, 1971–1979 (2011).

    Article  PubMed  Google Scholar 

  31. Giorgi, C., Bonora, M. & Pinton, P. Inside the tumor: p53 modulates calcium homeostasis. Cell Cycle 14, 933–934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giorgi, C. et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 112, 1779–1784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macian, F. NFAT proteins: key regulators of T cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ebert, B.L. et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med. 5, e35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fang, J. et al. Cytotoxic effects of bortezomib in myelodysplastic syndrome–acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood 120, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, L.S. et al. Ovarian cancer G-protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J. Natl. Cancer Inst. 99, 1313–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Cincinnati Children's Hospital Research Foundation (D.T.S.). We thank J. Bailey and V. Summey for assistance with transplantations. The normal bone marrow samples were received through the Normal Donor Repository in the Translational Core Laboratory at Cincinnati Children's Research Foundation, which is supported through the NIDDK-funded Center of Excellence in Molecular Hematology (grant no. P30DK090971; to Y. Zheng (CCHMC)). We thank B. Ebert (Harvard Medical School; Dana-Farber Cancer Institute) for providing the EGI and EGI-IKZF1 vectors, and for his expertise and discussions. In addition, we thank Y. Xu (Indiana University School of Medicine) for providing the MIG-GPR68 vector and K. Tohyama (Kawasaki Medical School) for the MDSL cells.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and D.T.S. designed and interpreted data, and wrote the paper; D.T.S. conceived the study, obtained funding, and coordinated collaborations; J.F., X.L., L.B., B.B., and C.F. performed experiments and analyzed data; C.R., A.C., M.C., and E.N.O. provided and characterized patient samples; K.M. provided important reagents and conceptual input to the design of the study; H.L.G. provided conceptual input to the design of the study; and K.K. performed the bioinformatics analysis of the shRNA screen.

Corresponding author

Correspondence to Daniel T Starczynowski.

Ethics declarations

Competing interests

C.F. and K.M. are employees of Celgene.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–2 (PDF 2624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Liu, X., Bolanos, L. et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat Med 22, 727–734 (2016). https://doi.org/10.1038/nm.4127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing