Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes

Abstract

Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced GPS2 expression in AT macrophages of humans with obesity or diabetes is correlated with AT inflammation and hyperglycemia.
Figure 2: GPS2-deficient macrophages (MKO) display a pro-inflammatory gene signature and increased responsiveness toward TLR4 activation.
Figure 3: The loss of macrophage GPS2 dictates epigenomic changes linked to transcriptional activation at specific loci.
Figure 4: GPS2 communicates with c-Jun to repress inflammatory transcription.
Figure 5: Macrophage GPS2-deficiency enhances AT and systemic inflammation during HFD-induced obesity.
Figure 6: GPS2 overexpression inhibits AT inflammation and improves blood glucose control in mice with HFD-induced obesity and in ob/ob mice.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Glass, C.K. & Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray, P.J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dalmas, E., Clément, K. & Guerre-Millo, M. Defining macrophage phenotype and function in adipose tissue. Trends Immunol. 32, 307–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Dalmas, E. et al. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat. Med. 21, 610–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagareddy, P.R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, K., Kusminski, C.M. & Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tchernof, A. & Després, J.P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arner, E., Rydén, M. & Arner, P. Tumor necrosis factor alpha and regulation of adipose tissue. N. Engl. J. Med. 362, 1151–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gosselin, D. & Glass, C.K. Epigenomics of macrophages. Immunol. Rev. 262, 96–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hah, N. et al. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc. Natl. Acad. Sci. USA 112, E297–E302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaikkonen, M.U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Link, V.M., Gosselin, D. & Glass, C.K. Mechanisms underlying the selection and function of macrophage-specific enhancers. Cold Spring Harb. Symp. Quant. Biol. 027367 (2015).

  19. Glass, C.K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Guenther, M.G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 14, 1048–1057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guenther, M.G., Barak, O. & Lazar, M.A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, J., Kalkum, M., Chait, B.T. & Roeder, R.G. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Oberoi, J. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat. Struct. Mol. Biol. 18, 177–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barish, G.D. et al. The Bcl6-SMRT/NCoR cistrome represses inflammation to attenuate atherosclerosis. Cell Metab. 15, 554–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghisletti, S. et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 23, 681–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Glass, C.K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Venteclef, N. et al. GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev. 24, 381–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toubal, A. et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J. Clin. Invest. 123, 362–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Cardamone, M.D. et al. A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2. Mol. Cell 46, 91–104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, P. et al. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147, 815–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, P. et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155, 200–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullican, S.E. et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25, 2480–2488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, X. et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl. Acad. Sci. USA 109, E2865–E2874 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun, Z. et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 52, 769–782 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Uhlenhaut, N.H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 158–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Cardamone, M.D. et al. GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARγ. Cell Rep. 8, 163–176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahima, R.S. & Lazar, M.A. Physiology. The health risk of obesity—better metrics imperative. Science 341, 856–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kang, S. et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat. Cell Biol. 17, 44–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Toubal, A., Treuter, E., Clément, K. & Venteclef, N. Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends Endocrinol. Metab. 24, 625–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Stasevich, T.J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jonas, B.A. & Privalsky, M.L. SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J. Biol. Chem. 279, 54676–54686 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hambleton, J., Weinstein, S.L., Lem, L. & DeFranco, A.L. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl. Acad. Sci. USA 93, 2774–2778 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolter, S. et al. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol. Cell. Biol. 28, 4407–4423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weiss, C. et al. JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J. 22, 3686–3695 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, S.K., Kim, J.H., Lee, Y.C., Cheong, J. & Lee, J.W. Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-κβ, and serum response factor. J. Biol. Chem. 275, 12470–12474 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Ogawa, S. et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl. Acad. Sci. USA 101, 14461–14466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Siersbæk, R. et al. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 7, 1443–1455 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  56. Behrens, A. et al. Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J. 21, 1782–1790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Prieur, X. et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60, 797–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Núñez, V. et al. Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. USA 107, 10626–10631 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, D. et al. ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48, 240–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  64. McCarthy, D.J., Chen, Y. & Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gautier, E.L. et al. HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. J. Exp. Med. 210, 339–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hajduch, E., Darakhshan, F. & Hundal, H.S. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia 41, 821–828 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Ozgene Pty, Ltd. for generating floxed GPS2 mice. We acknowledge V. Benes and the team at the EMBL Genomics Core Facility for ChIP-seq library preparation and sequencing. We thank S. Mandrup (University of Southern Denmark), K. de Bosscher (Ghent University), J. Taipale (Karolinska Institutet), and F. Zhang (Broad Institute) for providing plasmids, and T. Jakobsson for his advice in establishing the CRISPR–Cas9 system. We also thank F. Fagerström-Billai and co-workers at the BEA Core Facility (Karolinska Institutet) for microarray preparation and analysis. For assistance with pathological analysis and FACS sorting, we thank R. Kuiper, T. Schröder, and Å.-L. Dackland (Department of Laboratory Medicine, Karolinska Institutet). We thank R. Chiche, J. Cady, and S. Gueroult (Geoffroy Saint-Hilaire Clinic Paris) for human AT sampling, and J.-L. Nguewa for his help in PHRC Glucostress. This work was supported by grants from the Swedish Research Council (Vetenskapsrådet, E.T.); the Swedish Cancer Society (Cancerfonden, E.T.); the Swedish Diabetes Foundation (Diabetesfonden, E.T.); the Novo Nordisk Foundation (Novo Nordisk Fonden, E.T.); the Center for Biosciences (former CB, now CIMED) at Karolinska Institutet (E.T.); the French National Agency of Research (CONRAD, N.V.; ANR CE12 2014, FATMAC, T.B.); Region Ile de France (CORDDIM, N.V.); Paris city (EMERGENCE, N.V.); the French Foundation for Medical Research (Equipe FRM DEQ20140329504, N.V. and F.F.); a French government grant managed by the National Agency of Research (program 'Investments for the Future' reference ANR-10-IAH, ICAN MetaMACS, N.V. and F.F.); Assistance Publique des Hôpitaux de Paris (APHP), Programs of Clinical Investigation (CRC Fibrota AOO759-32 to J.A.-W.; and PHRC Glucostress P081122 to J.-F.G.). A.T. and K.D. received a doctoral fellowship from the 'Ministère de la Recherche et de l'Enseignement supérieur'. Z.H. received a doctoral fellowship from the China Scholarship Council (CRC), and N.L. received a doctoral faculty grant from the Karolinska Institutet (KID funding).

Author information

Authors and Affiliations

Authors

Contributions

R.F., A.T. and S.G. share the first authorship. K.D. and Z.H. share the second authorship. R.F. and A.T. performed the majority of in vivo experiments, with contributions from K.D., I.H., R.B., and F.A., and analyzed data. S.G. performed the genomic and ChIP-seq studies, with major contribution from Z.H., and A.D. and R.F. analyzed genomic data. N.L. contributed to the in vitro studies. F.F., J.-F.G., J.A.-W., A.S., A.T., P.A., and N.V. collected, analyzed, and interpreted the human data. T.L. provided Jun KO mice and analyzed data. R.F., N.V., and E.T. conceived the study, interpreted data, and wrote the manuscript. N.V. and E.T. supervised the study and share the corresponding authorship.

Corresponding authors

Correspondence to Nicolas Venteclef or Eckardt Treuter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–6 (PDF 14535 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Toubal, A., Goñi, S. et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med 22, 780–791 (2016). https://doi.org/10.1038/nm.4114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing