Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interictal epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy

Abstract

Interactions between the hippocampus and the cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but the mechanisms by which they interact with physiological patterns of network activity are mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation, and that they are precisely coordinated with spindle oscillations in the prefrontal cortex during nonrapid-eye-movement (NREM) sleep. This coordination surpasses the normal physiological ripple–spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during rapid-eye movement (REM) sleep and wakefulness—behavioral states that do not naturally express these oscillations—by generating a cortical 'down' state. In a pilot clinical examination of four subjects with focal epilepsy, we confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions. These findings imply that IEDs may impair memory via the misappropriation of physiological mechanisms for hippocampal–cortical coupling, which suggests a target for the treatment of memory impairment in epilepsy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The occurrence, detection and coupling of hippocampal and mPFC oscillations during kindling.
Figure 2: Hippocampal IEDs impair memory.
Figure 3: Correlation of hippocampal IEDs and ripples with mPFC spindles.
Figure 4: Hippocampal IEDs trigger mPFC spindles in all behavioral states.
Figure 5: Hippocampal IEDs trigger cortical down states in the mPFC.
Figure 6: IEDs in subjects with epilepsy-trigger cortical spindles.

References

  1. 1

    Hermann, B.P. et al. Cognitive prognosis in chronic temporal lobe epilepsy. Ann. Neurol. 60, 80–87 (2006).

    PubMed  Google Scholar 

  2. 2

    Ebus, S. et al. Cognitive effects of interictal epileptiform discharges in children. Eur. J. Paediatr. Neurol. 16, 697–706 (2012).

    CAS  PubMed  Google Scholar 

  3. 3

    Lv, Y., Wang, Z., Cui, L., Ma, D. & Meng, H. Cognitive correlates of interictal epileptiform discharges in adult patients with epilepsy in China. Epilepsy Behav. 29, 205–210 (2013).

    PubMed  Google Scholar 

  4. 4

    Binnie, C.D. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol. 2, 725–730 (2003).

    PubMed  Google Scholar 

  5. 5

    Brinciotti, M., Matricardi, M., Paolella, A., Porro, G. & Benedetti, P. Neuropsychological correlates of subclinical paroxysmal EEG activity in children with epilepsy. 1: Qualitative features (generalized and focal abnormalities). Funct. Neurol. 4, 235–239 (1989).

    CAS  PubMed  Google Scholar 

  6. 6

    Holmes, G.L. & Lenck-Santini, P.P. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav. 8, 504–515 (2006).

    PubMed  Google Scholar 

  7. 7

    Khan, O.I., Zhao, Q., Miller, F. & Holmes, G.L. Interictal spikes in developing rats cause long-standing cognitive deficits. Neurobiol. Dis. 39, 362–371 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Krauss, G.L., Summerfield, M., Brandt, J., Breiter, S. & Ruchkin, D. Mesial temporal spikes interfere with working memory. Neurology 49, 975–980 (1997).

    CAS  PubMed  Google Scholar 

  9. 9

    Kleen, J.K., Scott, R.C., Holmes, G.L. & Lenck-Santini, P.P. Hippocampal interictal spikes disrupt cognition in rats. Ann. Neurol. 67, 250–257 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Kleen, J.K. et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81, 18–24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  PubMed  Google Scholar 

  12. 12

    Maviel, T., Durkin, T.P., Menzaghi, F. & Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99 (2004).

    CAS  PubMed  Google Scholar 

  13. 13

    Remondes, M. & Schuman, E.M. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431, 699–703 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Buzsáki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    PubMed  Google Scholar 

  15. 15

    Wilson, M.A. & McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  PubMed  Google Scholar 

  16. 16

    Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G. & Zugaro, M.B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Google Scholar 

  17. 17

    Jadhav, S.P., Kemere, C., German, P.W. & Frank, L.M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    CAS  PubMed  Google Scholar 

  19. 19

    Johnson, L.A., Euston, D.R., Tatsuno, M. & McNaughton, B.L. Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density. J. Neurosci. 30, 2650–2661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Battaglia, F.P., Benchenane, K., Sirota, A., Pennartz, C.M. & Wiener, S.I. The hippocampus: hub of brain network communication for memory. Trends Cogn. Sci. 15, 310–318 (2011).

    PubMed  Google Scholar 

  21. 21

    Mölle, M., Yeshenko, O., Marshall, L., Sara, S.J. & Born, J. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J. Neurophysiol. 96, 62–70 (2006).

    PubMed  Google Scholar 

  22. 22

    Peyrache, A., Battaglia, F.P. & Destexhe, A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc. Natl. Acad. Sci. USA 108, 17207–17212 (2011).

    CAS  PubMed  Google Scholar 

  23. 23

    Siapas, A.G. & Wilson, M.A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Churchwell, J.C., Morris, A.M., Musso, N.D. & Kesner, R.P. Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol. Learn. Mem. 93, 415–421 (2010).

    PubMed  Google Scholar 

  25. 25

    Gais, S. et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl. Acad. Sci. USA 104, 18778–18783 (2007).

    CAS  PubMed  Google Scholar 

  26. 26

    Jones, M.W. & Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402 (2005).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Jay, T.M., Burette, F. & Laroche, S. NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat. Eur. J. Neurosci. 7, 247–250 (1995).

    CAS  PubMed  Google Scholar 

  28. 28

    Jay, T.M. & Witter, M.P. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 313, 574–586 (1991).

    CAS  PubMed  Google Scholar 

  29. 29

    Takita, M., Izaki, Y., Jay, T.M., Kaneko, H. & Suzuki, S.S. Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway. Eur. J. Neurosci. 11, 4145–4148 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Varela, C., Kumar, S., Yang, J.Y. & Wilson, M.A. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 219, 911–929 (2014).

    CAS  PubMed  Google Scholar 

  31. 31

    Colgin, L.L. Oscillations and hippocampal-prefrontal synchrony. Curr. Opin. Neurobiol. 21, 467–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Malow, B.A., Lin, X., Kushwaha, R. & Aldrich, M.S. Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia 39, 1309–1316 (1998).

    CAS  PubMed  Google Scholar 

  33. 33

    de Guzman, P.H., Nazer, F. & Dickson, C.T. Short-duration epileptic discharges show a distinct phase preference during ongoing hippocampal slow oscillations. J. Neurophysiol. 104, 2194–2202 (2010).

    PubMed  Google Scholar 

  34. 34

    Ferrillo, F. et al. Sleep-EEG modulation of interictal epileptiform discharges in adult partial epilepsy: a spectral analysis study. Clin. Neurophysiol. 111, 916–923 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Nobili, L. et al. Relationship of sleep interictal epileptiform discharges to sigma activity (12-16 Hz) in benign epilepsy of childhood with rolandic spikes. Clin. Neurophysiol. 110, 39–46 (1999).

    CAS  PubMed  Google Scholar 

  36. 36

    Morimoto, K., Fahnestock, M. & Racine, R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 (1992).

    PubMed  Google Scholar 

  38. 38

    Chersi, F. & Burgess, N. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. Neuron 88, 64–77 (2015).

    CAS  PubMed  Google Scholar 

  39. 39

    Dupret, D., O'Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Shatskikh, T.N., Raghavendra, M., Zhao, Q., Cui, Z. & Holmes, G.L. Electrical induction of spikes in the hippocampus impairs recognition capacity and spatial memory in rats. Epilepsy Behav. 9, 549–556 (2006).

    PubMed  Google Scholar 

  41. 41

    Buzsaki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8, 4007–4026 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Steriade, M., Nuñez, A. & Amzica, F. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13, 3266–3283 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Shewmon, D.A. & Erwin, R.J. The effect of focal interictal spikes on perception and reaction time. I. General considerations. Electroencephalogr. Clin. Neurophysiol. 69, 319–337 (1988).

    CAS  PubMed  Google Scholar 

  44. 44

    Holmes, G.L. EEG abnormalities as a biomarker for cognitive comorbidities in pharmacoresistant epilepsy. Epilepsia 54 (suppl. 2), 60–62 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Titiz, A.S., Mahoney, J.M., Testorf, M.E., Holmes, G.L. & Scott, R.C. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus 24, 1129–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Lenck-Santini, P.P. & Holmes, G.L. Altered phase precession and compression of temporal sequences by place cells in epileptic rats. J. Neurosci. 28, 5053–5062 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Marcelin, B. et al. h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol. Dis. 33, 436–447 (2009).

    CAS  PubMed  Google Scholar 

  48. 48

    Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Bragin, A., Engel, J. Jr., Wilson, C.L., Fried, I. & Mathern, G.W. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid–treated rats with chronic seizures. Epilepsia 40, 127–137 (1999).

    CAS  PubMed  Google Scholar 

  50. 50

    Bragin, A., Wilson, C.L. & Engel, J. Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41 (suppl. 6), S144–S152 (2000).

    PubMed  Google Scholar 

  51. 51

    Buzsáki, G., Hsu, M., Slamka, C., Gage, F.H. & Horváth, Z. Emergence and propagation of interictal spikes in the subcortically denervated hippocampus. Hippocampus 1, 163–180 (1991).

    PubMed  Google Scholar 

  52. 52

    Wadman, W.J., Da Silva, F.H. & Leung, L.W. Two types of interictal transients of reversed polarity in rat hippocampus during kindling. Electroencephalogr. Clin. Neurophysiol. 55, 314–319 (1983).

    CAS  PubMed  Google Scholar 

  53. 53

    Bernhardt, B.C. et al. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72, 1747–1754 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Kleen, J.K., Wu, E.X., Holmes, G.L., Scott, R.C. & Lenck-Santini, P.P. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J. Neurosci. 31, 15397–15406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Frauscher, B. et al. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 138, 1629–1641 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Massimini, M. et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. USA 104, 8496–8501 (2007).

    CAS  PubMed  Google Scholar 

  57. 57

    Vyazovskiy, V.V., Faraguna, U., Cirelli, C. & Tononi, G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol. 101, 1921–1931 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Fahoum, F., Zelmann, R., Tyvaert, L., Dubeau, F. & Gotman, J. Epileptic discharges affect the default mode network--FMRI and intracerebral EEG evidence. PLoS One 8, e68038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Inostroza, M. & Born, J. Sleep for preserving and transforming episodic memory. Annu. Rev. Neurosci. 36, 79–102 (2013).

    CAS  PubMed  Google Scholar 

  60. 60

    Krook-Magnuson, E., Gelinas, J.N., Soltesz, I. & Buzsáki, G. Neuroelectronics and biooptics: closed-loop technologies in neurological disorders. JAMA Neurol. 72, 823–829 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Peele, D.B. & Gilbert, M.E. Functional dissociation of acute and persistent cognitive deficits accompanying amygdala-kindled seizures. Behav. Brain Res. 48, 65–76 (1992).

    CAS  PubMed  Google Scholar 

  62. 62

    Liu, X. et al. Seizure-induced changes in place cell physiology: relationship to spatial memory. J. Neurosci. 23, 11505–11515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Boukhezra, O. et al. Effect of the postictal state on visual-spatial memory in immature rats. Epilepsy Res. 55, 165–175 (2003).

    PubMed  Google Scholar 

  64. 64

    Stark, E. et al. Inhibition-induced theta resonance in cortical circuits. Neuron 80, 1263–1276 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Yang, A.I. et al. Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage 63, 157–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Desikan, R.S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    PubMed  Google Scholar 

  67. 67

    Stark, E. & Abeles, M. Unbiased estimation of precise temporal correlations between spike trains. J. Neurosci. Methods 179, 90–100 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute of Health grants (NS90583, MH54671, MH107396, MH102840; G.B.), the US National Science Foundation PIRE (G.B.), and the Mathers Foundation (G.B.). J.N.G. is a fellow of the Pediatric Scientist Development Program, and this project was supported through the March of Dimes Foundation. D.K. is supported through the Simons Foundation (junior fellow). We thank A. Peyrache for fruitful discussion; J. Long for use of the cheeseboard maze and advice on behavioral protocol; and Z. Zhao for technical support. We thank K. Berry, A. Boomhaur and P. del Prato for providing access to the sleep electrocorticography epilepsy data. Thanks also to H.X. Wang for providing the MRI-based electrode localizations for this data.

Author information

Affiliations

Authors

Contributions

J.N.G. and G.B. conceived the project. J.N.G. and D.K. did the in vivo rat experiments. J.N.G. and D.K. analyzed rat and human neural data. T.T. and O.D. supervised the human epilepsy recordings and processes related to the institutional review board. J.N.G., D.K. and G.B. wrote the paper, with input from the other authors.

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 3617 kb)

41591_2016_BFnm4084_MOESM16_ESM.mp4

Rat performs cheeseboard-maze trial Caption: Left, rat navigates to and consumes three hidden water rewards during the last trial of a training session. Right, offline analysis of rat's location during same trial, with navigation periods in red and consummatory periods in blue. (MP4 11283 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gelinas, J., Khodagholy, D., Thesen, T. et al. Interictal epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy. Nat Med 22, 641–648 (2016). https://doi.org/10.1038/nm.4084

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing