Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death

Abstract

Cetuximab is a monoclonal antibody that is effective in the treatment of metastatic colorectal cancer (mCRC). Cetuximab blocks epidermal growth factor receptor (EGFR)-ligand interaction and inhibits downstream RAS–ERK activation. However, only some activating mutations in RAS affect cetuximab efficacy, and it is not clear what else mediates treatment success. Here we hypothesized that cetuximab induces immunogenic cell death (ICD) that activates a potent antitumor response. We found that cetuximab, in combination with chemotherapy, fostered ICD in CRC cells, which we measured via the endoplasmic reticulum (ER) stress response and an increase in phagocytosis by dendritic cells. ICD induction depended on the mutational status of the EGFR signaling pathway and on the inhibition of the splicing of X-box binding protein 1 (XBP1), an unfolded protein response (UPR) mediator. We confirmed the enhanced immunogenicity elicited by cetuximab in a mouse model of human EGFR-expressing CRC. Overall, we demonstrate a new, immune-related mechanism of action of cetuximab that may help to tailor personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cetuximab triggers ER stress response and the translocation of CRT and ERp57 to the cell surface.
Figure 2: Cetuximab-treated tumor cells are readily phagocytosed by DCs.
Figure 3: Cetuximab-treated hEGFR-CT26 cells induce a potent anti-tumor response in vivo.
Figure 4: Treatment with F + C, in combination with PLX4032 and trametinib, induces phagocytosis of BRAFV600E Lim1215 cells.
Figure 5: Cetuximab does not block the splicing of XBP1 and cell adaptation in Lim1215 BRAFV600E cells.

Similar content being viewed by others

References

  1. Fakih, M.G. et al. Metastatic colorectal cancer: current state and future directions. J. Clin. Oncol 33, 1809–1824 (2015).

    Article  CAS  Google Scholar 

  2. Peeters, M. & Price, T. Biologic therapies in the metastatic colorectal cancer treatment continuum—applying current evidence to clinical practice. Cancer Treat. Rev. 38, 397–406 (2012).

    Article  Google Scholar 

  3. Prenen, H. et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin. Cancer Res. 15, 3184–3188 (2009).

    Article  CAS  Google Scholar 

  4. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    Article  CAS  Google Scholar 

  5. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  Google Scholar 

  6. Sorich, M.J. et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann. Oncol. 26, 13–21 (2015).

    Article  CAS  Google Scholar 

  7. Price, T.J. et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 15, 569–579 (2014).

    Article  CAS  Google Scholar 

  8. Arteaga, C.L. & Engelman, J.A. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25, 282–303 (2014).

    Article  CAS  Google Scholar 

  9. Modest, D.P. et al. Impact of the specific mutation in KRAS codon 12 mutated tumors on treatment efficacy in patients with metastatic colorectal cancer receiving cetuximab-based first-line therapy: a pooled analysis of three trials. Oncology 83, 241–247 (2012).

    Article  CAS  Google Scholar 

  10. Kishiki, T. et al. Impact of genetic profiles on the efficacy of anti-EGFR antibodies in metastatic colorectal cancer with KRAS mutation. Oncol. Rep. 32, 57–64 (2014).

    Article  CAS  Google Scholar 

  11. Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012).

    Article  CAS  Google Scholar 

  12. Zitvogel, L. et al. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res. 16, 3100–3104 (2010).

    Article  CAS  Google Scholar 

  13. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. OncoImmunology 3, e955691 (2014).

    Article  Google Scholar 

  14. Vacchelli, E. et al. Trial watch: chemotherapy with immunogenic cell death inducers. OncoImmunology 3, e27878 (2014).

    Article  Google Scholar 

  15. Di Nicolantonio, F. et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712 (2008).

    Article  CAS  Google Scholar 

  16. Obeid, M. ERp57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181, 2533–2543 (2008).

    Article  CAS  Google Scholar 

  17. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    Article  CAS  Google Scholar 

  18. Kato, H. & Nishitoh, H. Stress responses from the endoplasmic reticulum in cancer. Front. Oncol. 5, 93 (2015).

    Article  Google Scholar 

  19. Wang, M. & Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581–597 (2014).

    Article  CAS  Google Scholar 

  20. Garrido, G. et al. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J. Immunol. 187, 4954–4966 (2011).

    Article  CAS  Google Scholar 

  21. Licitra, L. et al. Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur. J. Cancer 49, 1161–1168 (2013).

    Article  CAS  Google Scholar 

  22. Karapetis, C.S. et al. PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer—results from NCIC CTG/AGITG CO.17. Clin. Cancer Res. 20, 744–753 (2014).

    Article  CAS  Google Scholar 

  23. Sahin, I.H. et al. Rare though not mutually exclusive: a report of three cases of concomitant KRAS and BRAF mutation and a review of the literature. J. Cancer 4, 320–322 (2013).

    Article  Google Scholar 

  24. Samowitz, W.S. et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J. Natl. Cancer Inst. 98, 1731–1738 (2006).

    Article  CAS  Google Scholar 

  25. Tol, J., Nagtegaal, I.D. & Punt, C.J. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99 (2009).

    Article  CAS  Google Scholar 

  26. Van Cutsem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  CAS  Google Scholar 

  27. Bokemeyer, C. et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann. Oncol. 22, 1535–1546 (2011).

    Article  CAS  Google Scholar 

  28. Bokemeyer, C. et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer 48, 1466–1475 (2012).

    Article  CAS  Google Scholar 

  29. Pietrantonio, F. et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur. J. Cancer 51, 587–594 (2015).

    Article  CAS  Google Scholar 

  30. Lamba, S. et al. RAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells. Cell Rep. 8, 1475–1483 (2014).

    Article  CAS  Google Scholar 

  31. Sigismund, S. et al. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J. 32, 2140–2157 (2013).

    Article  CAS  Google Scholar 

  32. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2010).

    Article  CAS  Google Scholar 

  33. Rimoldi, M. et al. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106, 2818–2826 (2005).

    Article  CAS  Google Scholar 

  34. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

  35. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  36. Olsen, J.V. et al. A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell. Proteomics 8, 2759–2769 (2009).

    Article  CAS  Google Scholar 

  37. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  Google Scholar 

  38. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol. Biol. 604, 55–71 (2010).

    Article  CAS  Google Scholar 

  39. Tyanova, S., Mann, M. & Cox, J. MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol. Biol. 1188, 351–364 (2014).

    Article  Google Scholar 

  40. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by grants of the Italian Association for Cancer Research (AIRC) (IG11863 to M.R.) and the Italian Ministry of Health (Ricerca finalizzata) (RF-2011-02348920 to M.R.). We thank S. Chiocca for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.P. did most of the experiments. C.P. and G.P. analyzed the data. M.R. designed the study, analyzed the data and wrote the paper, with editorial input from M.G.Z. and P.S.R. E.M., A.B. and P.P.D.F. participated in the study design. I.S. performed confocal analyses. T.B. designed the SILAC experiments. A.S. and A. Cuomo performed and analyzed the data from SILAC analysis. S.S. and A. Conte performed some of the biochemical studies. C.C. generated isogenic Lim1215 cell lines.

Corresponding author

Correspondence to Maria Rescigno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 3–4 (PDF 1210 kb)

Supplementary Table 1

SILAC analysis (XLSX 315 kb)

Supplementary Table 2

SILAC analysis (XLSX 224 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzi, C., Cuomo, A., Spadoni, I. et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 22, 624–631 (2016). https://doi.org/10.1038/nm.4078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing