Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption

Abstract

Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4−/−) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: LGR4 interacts with RANKL.
Figure 2: LGR4 activates Gαq-mediated calcium signaling in response to RANKL.
Figure 3: Lgr4 loss decreases bone mass and enhances osteoclast activity in vivo.
Figure 4: Lgr4 loss enhances osteoclast formation and inhibits mature osteoclast apoptosis.
Figure 5: RANKL–LGR4–Gαq signaling inhibits RANK–NF-κB–mediated osteoclastogenesis.
Figure 6: Soluble LGR4-ECD protein ameliorates bone loss in the RANKL-injection and Tnfrsf11b-knockout osteoporosis mouse models.

Accession codes

Accessions

Protein Data Bank

References

  1. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    CAS  Google Scholar 

  2. Hanada, R., Hanada, T., Sigl, V., Schramek, D. & Penninger, J.M. RANKL/RANK-beyond bones. J. Mol. Med. 89, 647–656 (2011).

    CAS  PubMed  Google Scholar 

  3. Fata, J.E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000).

    CAS  PubMed  Google Scholar 

  4. Jones, D.H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    CAS  PubMed  Google Scholar 

  5. Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  6. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schramek, D. et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiechl, S. et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    CAS  PubMed  Google Scholar 

  9. Hanada, R. et al. Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009).

    CAS  PubMed  Google Scholar 

  10. Simonet, W.S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    CAS  PubMed  Google Scholar 

  11. Lacey, D.L. et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

    CAS  PubMed  Google Scholar 

  12. Weng, J. et al. Deletion of G protein-coupled receptor 48 leads to ocular anterior segment dysgenesis (ASD) through down-regulation of Pitx2. Proc. Natl. Acad. Sci. USA 105, 6081–6086 (2008).

    CAS  PubMed  Google Scholar 

  13. Luo, J. et al. Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development 136, 2747–2756 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carmon, K.S., Gong, X., Lin, Q., Thomas, A. & Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc. Natl. Acad. Sci. USA 108, 11452–11457 (2011).

    CAS  PubMed  Google Scholar 

  15. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    CAS  PubMed  Google Scholar 

  16. Styrkarsdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497, 517–520 (2013).

    CAS  PubMed  Google Scholar 

  17. Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 115, 151–162 (2003).

    CAS  PubMed  Google Scholar 

  18. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    CAS  PubMed  Google Scholar 

  19. Du, B. et al. Lgr4/Gpr48 negatively regulates TLR2/4-associated pattern recognition and innate immunity by targeting CD14 expression. J. Biol. Chem. 288, 15131–15141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2. Stem Cells 31, 1921–1931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J. et al. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat. Cell Biol. 15, 1455–1463 (2013).

    CAS  PubMed  Google Scholar 

  22. Gao, Y. et al. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res. 66, 11623–11631 (2006).

    CAS  PubMed  Google Scholar 

  23. Wu, J. et al. GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer. Carcinogenesis 34, 2861–2869 (2013).

    CAS  PubMed  Google Scholar 

  24. Joshi, P.A. et al. RANK signaling amplifies WNT-responsive mammary progenitors through R-SPONDIN1. Stem Cell Reports 5, 31–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, D. et al. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev. 27, 1339–1344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Deng, C. et al. Multi-functional norrin is a ligand for the LGR4 receptor. J. Cell Sci. 126, 2060–2068 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, X. et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 73, 6206–6218 (2013).

    CAS  PubMed  Google Scholar 

  28. Clapham, D.E. Calcium signaling. Cell 131, 1047–1058 (2007).

    CAS  Google Scholar 

  29. Wu, X. et al. RANKL regulates Fas expression and Fas-mediated apoptosis in osteoclasts. J. Bone Miner. Res. 20, 107–116 (2005).

    CAS  PubMed  Google Scholar 

  30. Krönke, G. et al. R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62, 2303–2312 (2010).

    PubMed  Google Scholar 

  31. Moon, J.B. et al. Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. J. Immunol. 188, 163–169 (2012).

    CAS  PubMed  Google Scholar 

  32. Takeshita, S. et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J. Clin. Invest. 123, 3914–3924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizuno, A. et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 247, 610–615 (1998).

    CAS  PubMed  Google Scholar 

  34. Lacey, D.L. et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157, 435–448 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jimi, E. et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163, 434–442 (1999).

    CAS  PubMed  Google Scholar 

  36. Boyce, B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 92, 860–867 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Manolagas, S.C. & Parfitt, A.M. What old means to bone. Trends Endocrinol. Metab. 21, 369–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pierce, B.G., Hourai, Y. & Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6, e24657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dai, W. et al. Improvement in low-homology template-based modeling by employing a model evaluation method with focus on topology. PLoS One 9, e89935 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Li, C. et al. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. J. Bone Miner. Res. 26, 644–656 (2011).

    CAS  PubMed  Google Scholar 

  41. Chu, G.C. et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr. Relat. Cancer 21, 311–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, X. et al. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. J. Bone Miner. Res. 27, 1298–1308 (2012).

    CAS  PubMed  Google Scholar 

  43. McMichael, B.K., Meyer, S.M. & Lee, B.S. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J. Biol. Chem. 285, 26641–26651 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z. et al. Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 118, 1912–1922 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Basic Research Program of China (2012CB910402 to J.L.; 2012CB910400 to M.L.), the National Natural Science Foundation of China (81472048, 81272911 to J.L.; 81330049 to M.L.; 81522011 to J.W.), the Science and Technology Commission of Shanghai Municipality (15140903600 to J.L.), and the Innovation Program of Shanghai Municipal Education Commission (14ZZ051 to J.L.). The advanced ERC grant and an Era of Hope/DoD innovator award were given to JMP. We thank G. Ning (Ruijin Hospital, Shanghai JiaoTong University School of Medicine) for the Lgr4floxed mice, J. Penninger (Institute of Molecular Biotechnology of the Austrian Academy of Sciences) for the Rankfloxed mice, and Y. Zhang (Shanghai East Hospital, Tongji University School of Medicine) for the LysM-Cre mice.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Z. Yang generated the initial idea, proposed the hypothesis, and designed the study. Z.Yang conducted the key experiments. J.L. and M.L. supervised the study and performed the data analysis, interpreted results and wrote the manuscript. Y.M., Z. Yue, H.L., G.Q., J.H., C.L., and C.Z., performed the experiments. W.D. performed the docking and molecular modeling. L.X. and J.X. prepared and analyzed human samples. H.C., J.W., D.L., S.S., J.M.P., and G.N. provided the animals and analyzed the animal data. S.S. and J.M.P., analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Jian Luo, Jianru Xiao or Mingyao Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–2 (PDF 4557 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Yang, Z., Ma, Y. et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22, 539–546 (2016). https://doi.org/10.1038/nm.4076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing