Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inflammatory signaling in human tuberculosis granulomas is spatially organized

Abstract

Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High-resolution mass-spectrometry profiling of granuloma composition.
Figure 2: Quantitative proteome analysis reveals spatially distinct protein signatures in granulomas.
Figure 3: AA is abundant and synthesized diffusely within all granulomas.
Figure 4: Leukotriene biosynthesis is enriched in the caseum and in the cellular layer directly adjacent to the caseum.
Figure 5: TNF-α and LTA4H are more abundant in the caseum and its margins.
Figure 6: COX1 and COX2 are diffusely expressed throughout all granuloma regions.

References

  1. World Health Organization. World Health Organization tuberculosis fact sheet no. 104 (World Health Organization, 2015).

  2. Taylor, J.L. et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun. 74, 6135–6144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Volkman, H.E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327, 466–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defense in the lung. J. Pathol. 204, 217–228 (2004).

    Article  PubMed  Google Scholar 

  5. Ehlers, S. & Schaible, U.E. The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Front. Immunol. 3, 411 (2012).

    PubMed  Google Scholar 

  6. Guirado, E. & Schlesinger, L.S. Modeling the Mycobacterium tuberculosis granuloma—the critical battlefield in host immunity and disease. Front. Immunol. 4, 98 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mattila, J.T. et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191, 773–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Cardona, P.-J. A spotlight on liquefaction: evidence from clinical settings and experimental models in tuberculosis. Clin. Dev. Immunol. 2011, 868246–868249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, M.-J. et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan, G. et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun. 71, 7099–7108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Subbian, S. et al. Lesion-specific immune response in granulomas of patients with pulmonary tuberculosis: a pilot study. PLoS One 10, e0132249 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bold, T.D. & Ernst, J.D. Who benefits from granulomas, mycobacteria or host? Cell 136, 17–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, J.M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Saunders, B.M. & Cooper, A.M. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol. Cell Biol. 78, 334–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Via, L.E. et al. Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using 2-[18F]fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Antimicrob. Agents Chemother. 56, 4391–4402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, P.L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Gideon, H.P. et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 11, e1004603 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mayer-Barber, K.D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon cross-talk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tobin, D.M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10, 899–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H.G. & Behar, S.M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat. Immunol. 11, 751–758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clay, H., Volkman, H.E. & Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29, 283–294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flynn, J.L. et al. Tumor necrosis factor–α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Dambuza, I. et al. Reactivation of M. tuberculosis infection in trans-membrane tumor-necrosis-factor mice. PLoS One 6, e25121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roca, F.J. & Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153, 521–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tobin, D.M. et al. The Lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fallahi-Sichani, M., El-Kebir, M., Marino, S., Kirschner, D.E. & Linderman, J.J. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 186, 3472–3483 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Cilfone, N.A. et al. Computational modeling predicts IL-10 control of lesion sterilization by balancing early host-immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J. Immunol. 194, 664–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Cilfone, N.A., Perry, C.R., Kirschner, D.E. & Linderman, J.J. Multiscale modeling predicts a balance of tumor necrosis factor–α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One 8, e68680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prideaux, B. et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 21, 1223–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prideaux, B. et al. High-sensitivity MALDI–MRM–MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 83, 2112–2118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Via, L.E. et al. A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob. Agents Chemother. 59, 4181–4189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tobin, D.M. & Ramakrishnan, L. TB: the yin and yang of lipid mediators. Curr. Opin. Pharmacol. 13, 641–645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leong, F., Eum, S. & Via, L.E. in A Color Atlas of Comparative Pathology of Pulmonary Tuberculosis (eds. Leong, F.J., Dartois, V. & Dick, T.) 53–81 (CRC Press, 2011).

  42. National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  43. Subbian, S. et al. Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol. 1, 110016 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ostasiewicz, P., Zielinska, D.F., Mann, M. & Wiśniewski, J.R. Proteome, phosphoproteome and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J. Proteome Res. 9, 3688–3700 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Sharma, K. et al. Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response. J. Proteome Res. 9, 2539–2549 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. D'Souza, R.C.J. et al. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Sci. Signal. 7, rs5 (2014).

    PubMed  Google Scholar 

  47. Michalski, A. et al. Mass-spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics 10, 011015 (2011).

    Article  PubMed  Google Scholar 

  48. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Guan, Y.Q., Cai, Y.Y., Zhang, X., Lee, Y.T. & Opas, M. Adaptive correction technique for 3D reconstruction of fluorescence microscopy images. Microsc. Res. Tech. 71, 146–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Mietla, J.A. et al. Characterization of eicosanoid synthesis in a genetic ablation model of ceramide kinase. J. Lipid Res. 54, 1834–1847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and staff of National Masan TB Hospital, as well as the technical staff from the International Tuberculosis Research Center, for their participation in our studies. We acknowledge A. Martinot for generating some of the H&E-stained images and for useful advice on the pathology studies, and thank members of the Rubin and Fortune laboratories for useful discussions. This work was supported by a Visiting Science Award from HHMI–K-RITH (E.J.R.), the US National Institutes of Health (NIH) grants 1S10OD018072-01A1 (shared instrumentation grant for the MALDI orbitrap; V.D.) and R01AI098637 (S.M.B.), the National Institute of Mental Health grant MH096625 (E.A.E.), the US Bill and Melinda Gates Foundation TB Drug Accelerator grant OPP 1066499 (V.D.), a US Public Health Research Institute (New Jersey Medical School) central grant (E.A.E.), the Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH (C.E.B.) and the Korean Centers of Disease Control, Ministry of Health, Welfare and Family Affairs (C.E.B.). We would like to acknowledge the PRIDE Team for upload of proteomics raw data.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M., R.M.R., K.S., Y.J.Z., E.A.E., B.P., M.M., V.D. and E.J.R. designed experiments; M.J.M., R.M.R., K.S., Y.J.Z., E.A.E., B.P., I.B.D., P.-Y.C. and L.E.V. performed experiments and analyzed data; M.J.M., K.S., Y.J.Z., E.A.E. and B.P. prepared the figures; J.H.K., S.Y.E., L.E.V. and C.E.B. contributed clinical samples and intellectual expertise; M.G.B. and S.M.B. contributed intellectual expertise; M.J.M., R.M.R., Y.J.Z., V.D. and E.J.R. wrote the manuscript; and all authors read the manuscript and approved the submission. Authors who contributed equally to the work are listed alphabetically.

Corresponding authors

Correspondence to Véronique Dartois or Eric J Rubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 4–6 (PDF 27468 kb)

Supplementary Table 2

Excel file of the raw data of all the proteomes; interior of a solid granuloma, the cellular borders of the caseous and cavitary granulomas, as well as the necrotic caseum of the caseous and cavitary granulomas. This includes imputed values as a separate sheet (XLSX 1589 kb)

Supplementary Table 3

Excel file of PCA GO and KEGG enrichment table (XLSX 166 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marakalala, M., Raju, R., Sharma, K. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22, 531–538 (2016). https://doi.org/10.1038/nm.4073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing