Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial calcineurin controls microbiota-dependent intestinal tumor development

Abstract

Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell–intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal epithelial calcineurin promotes intestinal tumor development.
Figure 2: Calcineurin regulates tumor development through NFAT.
Figure 3: TLR stimulation promotes NFAT activation in CRC.
Figure 4: Calcineurin-mediated tumor development is dependent on the microbiota.
Figure 5: Calcineurin and NFATc3 regulate cancer stem cells.
Figure 6: Activation of NFATc3 is associated with increased death from CRC.

Similar content being viewed by others

References

  1. Terzic´, J., Grivennikov, S., Karin, E. & Karin, M. Inflammation and colon cancer. Gastroenterology 138, 2101–2114 (2010).

    Article  PubMed  CAS  Google Scholar 

  2. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grivennikov, S.I. et al. Adenoma-linked barrier defects and microbial products drive IL-23– and IL-17–mediated tumor growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem cell–like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Li, H., Rao, A. & Hogan, P.G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 21, 91–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Adami, J. et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br. J. Cancer 89, 1221–1227 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dantal, J. et al. Effect of long-term immunosuppression in kidney graft recipients on cancer incidence: randomized comparison of two cyclosporin regimens. Lancet 351, 623–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Duque, J., Fresno, M. & Iñiguez, M.A. Expression and function of the nuclear factor of activated T cells in colon carcinoma cells: involvement in the regulation of cyclooxygenase-2. J. Biol. Chem. 280, 8686–8693 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Jauliac, S. et al. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat. Cell Biol. 4, 540–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Masuo, T., Okamura, S., Zhang, Y. & Mori, M. Cyclosporine A inhibits colorectal cancer proliferation probably by regulating expression levels of c-Myc, p21WAF1/CIP1 and proliferating cell nuclear antigen. Cancer Lett. 285, 66–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y., Wang, Q., Guo, Z., Weiss, H.L. & Evers, B.M. Nuclear factor of activated T cell–c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells. Mol. Biol. Cell 23, 2963–2972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Rivera, A. & Maxwell, S.A. The p53-induced gene–6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J. Biol. Chem. 280, 29346–29354 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Shinmen, N. et al. Activation of NFAT signal by p53K120R mutant. FEBS Lett. 583, 1916–1922 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Woodrow, M., Clipstone, N.A. & Cantrell, D. p21ras and calcineurin synergize to regulate the nuclear factor of activated T cells. J. Exp. Med. 178, 1517–1522 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Armesilla, A.L. et al. Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. Mol. Cell. Biol. 19, 2032–2043 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Köenig, A. et al. NFAT-induced histone acetylation relay switch promotes c-Myc–dependent growth in pancreatic cancer cells. Gastroenterology 138, 1189–1199 (2010).

    Article  PubMed  Google Scholar 

  21. Saneyoshi, T., Kume, S., Amasaki, Y. & Mikoshiba, K. The Wnt-calcium pathway activates NFAT and promotes ventral cell fate in Xenopus embryos. Nature 417, 295–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J.Y. et al. Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell. Signal. 24, 162–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dejea, C.M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kostic, A.D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, E.L. et al. High expression of toll-like receptor 4 and myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br. J. Cancer 102, 908–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arthur, J.C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dove, W.F. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).

    CAS  PubMed  Google Scholar 

  29. Kostic, A.D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S.H. et al. ERK activation drives intestinal tumorigenesis in ApcMin/+ mice. Nat. Med. 16, 665–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in ApcMin/+ mice. Carcinogenesis 33, 1231–1238 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Scheeren, F.A. et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat. Cell Biol. 16, 1238–1248 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Song, X. et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 40, 140–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zanoni, I. et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460, 264–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Santaolalla, R. et al. TLR4 activates the β-catenin pathway to cause intestinal neoplasia. PLoS One 8, e63298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rallabhandi, P. et al. Differential activation of human TLR4 by Escherichia coli and Shigella flexneri 2a lipopolysaccharide: combined effects of lipid A acylation state and TLR4 polymorphisms on signaling. J. Immunol. 180, 1139–1147 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, S. & Kielian, T. Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways. J. Immunol. 183, 5537–5547 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Buchholz, M. et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+-calcineurin signaling pathway. EMBO J. 25, 3714–3724 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, X. et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature 465, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carvalho, L.D. et al. The NFAT1 transcription factor is a repressor of cyclin A2 gene expression. Cell Cycle 6, 1789–1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, X. et al. Transcription factor NFAT1 activates the Mdm2 oncogene independent of p53. J. Biol. Chem. 287, 30468–30476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Mulder, J.W. et al. Colorectal cancer prognosis and expression of exon v6–containing CD44 proteins. Lancet 344, 1470–1472 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Zeilstra, J. et al. Deletion of the WNT target and cancer stem cell marker CD44 in ApcMin/+ mice attenuates intestinal tumorigenesis. Cancer Res. 68, 3655–3661 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Todaro, M. et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14, 342–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Zeilstra, J. et al. Stem cell CD44v isoforms promote intestinal cancer formation in Apcmin mice downstream of Wnt signaling. Oncogene 33, 665–670 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Keyes, B.E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl. Acad. Sci. USA 110, E4950–E4959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Lau, W. et al. Lgr5 homologs associate with Wnt receptors and mediate R-spondin signaling. Nature 476, 293–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Lakshmikuttyamma, A., Selvakumar, P., Kanthan, R., Kanthan, S.C. & Sharma, R.K. Increased expression of calcineurin in human colorectal adenocarcinomas. J. Cell. Biochem. 95, 731–739 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 33–337 (2012).

  53. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O'Keefe, S.J., Tamura, J., Kincaid, R.L., Tocci, M.J. & O'Neill, E.A. FK-506– and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 357, 692–694 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Sears, C.L. & Garrett, W.S. Microbes, microbiota and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tjalsma, H., Boleij, A., Marchesi, J.R. & Dutilh, B.E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson, M.J. & Willis, T.J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Article  Google Scholar 

  59. Benjamini, Y. & Hochberg, Y. Controlling the false-discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  60. Günther, C. et al. Caspase-8 controls the gut response to microbial challenges by TNF-α–dependent and independent pathways. Gut 64, 601–610 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Neal, M.D. et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 upregulated modulator of apoptosis. J. Biol. Chem. 287, 37296–37308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dupont, A. et al. Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut 64, 222–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Marchesi, J.R. et al. Toward the human colorectal cancer microbiome. PLoS One 6, e20447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neilson, J.R., Winslow, M.M., Hur, E.M. & Crabtree, G.R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Aliprantis, A.O. et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 118, 3775–3789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Canté-Barrett, K., Winslow, M.M. & Crabtree, G.R. Selective role of NFATc3 in positive selection of thymocytes. J. Immunol. 179, 103–110 (2007).

    Article  PubMed  Google Scholar 

  67. Madison, B.B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Adachi, O. et al. Targeted disruption of the Myd88 gene results in loss of IL-1– and IL-18–mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Heijmans, J. et al. Rage signaling promotes intestinal tumorigenesis. Oncogene 32, 1202–1206 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Adolph, T.E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Hill, D.A. et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 3, 148–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilkins, B.J. et al. Calcineurin-NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. De Windt, L.J. et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ. Res. 86, 255–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Sama, M.A. et al. Interleukin-1β–dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin-NFAT activity. J. Biol. Chem. 283, 21953–21964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zeissig, S. et al. Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity. Nat. Med. 18, 1060–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. D'Abaco, G.M., Whitehead, R.H. & Burgess, A.W. Synergy between Apcmin and an activated ras mutation is sufficient to induce colon carcinomas. Mol. Cell. Biol. 16, 884–891 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vidal, K., Grosjean, I., evillard, J.P., Gespach, C. & Kaiserlian, D. Immortalization of mouse intestinal epithelial cells by the SV40 large T gene. Phenotypic and immune characterization of the MODE-K cell line. J. Immunol. Methods 166, 63–73 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Zeissig, S. et al. Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional upregulation of epithelial sodium channels. Gastroenterology 132, 236–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Macián, F., García-Rodríguez, C. & Rao, A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 19, 4783–4795 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Veeman, M.T., Slusarski, D.C., Kaykas, A., Louie, S.H. & Moon, R.T. Zebrafish prickle, a modulator of noncanonical Wnt-Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Zeissig, S. et al. Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J. Clin. Invest. 120, 2889–2899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol. 59, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. & Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Magocˇ, T. & Salzberg, S.L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L.H. Glimcher (Weill Cornell Medical College), M.B. Greenblatt (Weill Cornell Medical College) and A.O. Aliprantis (Brigham and Women's Hospital, Harvard Medical School) for Nfatc1fl/fl mice and for helpful discussions; G.R. Crabtree (Center for Regenerative Therapies, Dresden) for Ppp3r1fl/fl and Nfatc3fl/fl mice; L. Niederreiter (Addenbrooke Hospital) for help with in situ hybridization; K. Schmidt, A. Gerneth, M. Pein (University Medical Center Schleswig-Holstein), S. Krüger (University Medical Center Schleswig-Holstein) and M. Jäger (Stanford University) for assistance with immunofluorescence, immunohistochemistry and TMA stainings; K. Cloppenborg-Schmidt (Institute for Experimental Medicine) for assistance with NGS library preparation; S. Robine (Institut Curie CNRS) for villin-CreERT2 mice; S. Akira (Research Institute for Microbial Diseases) for Myd88−/− mice; R.H. Whitehead (Vanderbilt University Medical Center) for the YAMC, IMCE and IMCE-Ras cells; C.M. Norris (Molecular and Biomedical Pharmacology) for the Ad5-CMV-VIVIT construct; R. Moon (University of Washington) for the TOPFlash plasmid; A. Rao ( La Jolla Institute for Allergy and Immunology) for the NFAT-Luc and NFATc3-eGFP plasmids; and W. Garrett (Harvard T.H. Chan School of Public Health), S. Schölch and D.E. Stange (University Medical Center Dresden) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants ZE814/5-1 (S.Z.), BA2863/5-1 (J.F.B.) and CH279/5-1 (T.C.), the European Research Council (ERC) starting grant 336528 (S.Z.), a Postdoctoral Fellowship Award from the Crohn's and Colitis Foundation of America (S.Z.), the European Commission (Marie Curie International Reintegration grant 256363; S.Z.), the DFG Excellence Cluster 'Inflammation at Interfaces' (S.Z. and J.F.B.), the DFG Excellence Cluster 'Center for Regenerative Therapies' (S.Z.); the US National Institutes of Health grants DK044319 (R.S.B.), DK051362 (R.S.B.), DK053056 (R.S.B.) and DK088199 (R.S.B.), the Harvard Digestive Diseases Center (HDDC) grant DK0034854 (R.S.B.), and the AIRC grant IG-14233 (M.E.B.).

Author information

Authors and Affiliations

Authors

Contributions

K.P., S.M., E.B., G.L. and A.S. developed and analyzed the described mouse models and performed in vivo and in vitro studies. J.W., S.K. and J.F.B. performed microbiota analyses and provided GF mice. M.B. and A.B. provided GF mice. A.U. contributed to EGF and VEGF signaling studies and to the generation of adenovirus. Y.Z. and C.R. performed histopathological analyses. A.K. contributed to stem cell analyses. G.R.v.d.B. provided RAGE-KO tissues. T.C. and M.E.B. contributed to HMGB1 studies. J.H., C.S., J.-H.E. and T.B. collected and provided CRC tissues. A.A. and S.S. contributed to the coordination of experimental studies. R.S.B. and S.Z. designed the study, coordinated the experimental work and wrote the manuscript with input from the coauthors. All authors discussed the results and commented on the manuscript. S.Z. and R.S.B. contributed equally to this work and are co-corresponding authors.

Corresponding authors

Correspondence to Richard S Blumberg or Sebastian Zeissig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Results and Supplementary Table 1 (PDF 10841 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peuker, K., Muff, S., Wang, J. et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 22, 506–515 (2016). https://doi.org/10.1038/nm.4072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4072

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer