Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer

A Corrigendum to this article was published on 07 June 2016

This article has been updated

Abstract

The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor–related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR–ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ROR-γ overexpression is associated with mCRPC progression and is required for the survival of prostate cancer cells.
Figure 2: ROR-γ antagonists inhibit the growth of CRPC cells.
Figure 3: ROR-γ controls the AR-dependent gene programs.
Figure 4: ROR-γ inhibition strongly suppresses the expression of AR and its variants, and eliminates AR genome binding.
Figure 5: ROR-γ directly controls AR gene expression through an exonic RORE and SRCs.
Figure 6: ROR-γ antagonists potently inhibit tumor growth and metastasis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

Change history

  • 22 April 2016

    In Figure 2a of the version of this article initially published online, one phenyl ring was inadvertently deleted from the chemical structure of compound SR2211. One affiliation of H.-W.C. (Veterans Affairs Northern California Health Care System–Mather, Mather, California, USA) was also inadvertently omitted. These errors have been corrected for the print, PDF and HTML versions of this article.

  • 07 June 2016

    Nat. Med.; doi:10.1038/nm.4070; corrected online 22 April 2016 In Figure 2a of the version of this article initially published online, one phenyl ring was inadvertently deleted from the chemical structure of compound SR2211. One affiliation of H.-W.C. (Veterans Affairs Northern California Health Care System–Mather, Mather, California, USA) was also inadvertently omitted.

References

  1. Ferraldeschi, R., Welti, J., Luo, J., Attard, G. & de Bono, J.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 34, 1745–1757 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Karantanos, T. et al. Understanding the mechanisms of androgen-deprivation resistance in prostate cancer at the molecular level. Eur. Urol. 67, 470–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Watson, P.A., Arora, V.K. & Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mostaghel, E.A., Plymate, S.R. & Montgomery, B. Molecular pathways: targeting resistance in the androgen receptor for therapeutic benefit. Clin. Cancer Res. 20, 791–798 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Myung, J.K. et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123, 2948–2960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, K.P. et al. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. Am. J. Pathol. 182, 460–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, Z. et al. Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor. Clin. Cancer Res. 20, 4075–4085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malik, R. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kojetin, D.J. & Burris, T.P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 13, 197–216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, X. et al. Nuclear receptors rock around the clock. EMBO Rep. 15, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y., Luo, X.Y., Wu, D.H. & Xu, Y. ROR nuclear receptors: structures, related diseases and drug discovery. Acta Pharmacol. Sin. 36, 71–87 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Takeda, Y. et al. Retinoic acid–related orphan receptor–γ (ROR-γ): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet. 10, e1004331 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Giguère, V. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR-α, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553 (1994).

    Article  PubMed  Google Scholar 

  15. Sun, Z. et al. Requirement for ROR-γ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Deblois, G. & Giguère, V. Estrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat. Rev. Cancer 13, 27–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Flaveny, C.A. et al. Broad anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis. Cancer Cell 28, 42–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solt, L.A. et al. Identification of a selective ROR-γ ligand that suppresses TH17 cells and stimulates T regulatory cells. ACS Chem. Biol. 7, 1515–1519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar, N. et al. Identification of SR2211: a potent synthetic ROR-γ–selective modulator. ACS Chem. Biol. 7, 672–677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. Discovery of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives as new ROR-γ inhibitors using virtual screening, synthesis and biological evaluation. Eur. J. Med. Chem. 78, 431–441 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, S. et al. Small-molecule ROR-γt antagonists inhibit TH17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent ROR-γt inhibitors. Bioorg. Med. Chem. 22, 692–702 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Chang, M.R., Lyda, B., Kamenecka, T.M. & Griffin, P.R. Pharmacologic repression of retinoic acid receptor–related orphan nuclear receptor–γ is therapeutic in the collagen-induced arthritis experimental model. Arthritis Rheumatol. 66, 579–588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar, N. et al. Identification of SR3335 (ML-176): a synthetic ROR-α–selective inverse agonist. ACS Chem. Biol. 6, 218–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Mendiratta, P. et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol. 27, 2022–2029 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, R. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72, 3457–3462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma, N.L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Frigo, D.E. et al. CaM kinase kinase β–mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 71, 528–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zou, J.X. et al. Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res. 69, 3339–3346 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ciofani, M. et al. A validated regulatory network for TH17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. René, O. et al. Minor structural change to tertiary sulfonamide RORC ligands led to opposite mechanisms of action. ACS Med. Chem. Lett. 6, 276–281 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Wang, Y. et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 74, 1506–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asangani, I.A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lange, T. et al. Aberrant presentation of HPA-reactive carbohydrates implies selectin-independent metastasis formation in human prostate cancer. Clin. Cancer Res. 20, 1791–1802 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Meissburger, B. et al. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma. EMBO Mol. Med. 3, 637–651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin, J. et al. Androgen deprivation–induced NCoA2 promotes metastatic and castration-resistant prostate cancer. J. Clin. Invest. 124, 5013–5026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong, J. et al. p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res. 74, 1870–1880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agoulnik, I.U. et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tien, J.C. et al. The steroid receptor coactivator–3 is required for the development of castration-resistant prostate cancer. Cancer Res. 73, 3997–4008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma, A. et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120, 4478–4492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Y. et al. LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth and invasion. Cancer Res. 69, 3332–3338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. et al. NF-κB regulates androgen receptor expression and prostate cancer growth. Am. J. Pathol. 175, 489–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, E. et al. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc. Natl. Acad. Sci. USA 110, 15710–15715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, J. et al. An integrated network of androgen receptor, polycomb and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antonarakis, E.S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang, Q. et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72, 2589–2599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strasner, A. & Karin, M. Immune infiltration and prostate cancer. Front. Oncol. 5, 128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tsai, H.C., Boucher, D.L., Martinez, A., Tepper, C.G. & Kung, H.J. Modeling truncated AR expression in a natural androgen-responsive environment and identification of RHOB as a direct transcriptional target. PLoS One 7, e49887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, P. et al. Histone methyltransferase NSD2 (MMSET) mediates constitutive NF-κB signaling for cancer cell proliferation, survival and tumor growth via a feed-forward loop. Mol. Cell. Biol. 32, 3121–3131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chandran, U.R. et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7, 64 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 67, 5117–5125 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Ross-Adams, H. et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine 2, 1133–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bild, A.H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kalashnikova, E.V. et al. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res. 70, 9402–9412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei, Q. et al. Reduced expression of mismatch repair genes measured by multiplex reverse transcription–polymerase chain reaction in human gliomas. Cancer Res. 57, 1673–1677 (1997).

    CAS  PubMed  Google Scholar 

  59. Li, H. & Durbin, R. Fast and accurate short-read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Louie, M.C. et al. Androgen-induced recruitment of RNA polymerase II to a nuclear receptor–p160 coactivator complex. Proc. Natl. Acad. Sci. USA 100, 2226–2230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt, D. et al. ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48, 240–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nguyen, H.G. et al. Targeting autophagy overcomes enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene 33, 4521–4530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Wu, Q. Wang, D. Chen, F. Wu, F. Li, Y. He and J. Shen for their technical expertise and for their critical comments. We thank C. Sawyers and A. van Bokhoven for providing LAPC4 and PC346C cells. This work was supported in part by grants from the Bridge Program of the University of California, Davis, Research Office (to H.-W.C.); the US National Institutes of Health (NIH) (R01CA206222 to H.-W.C.); the US Department of Veterans Affairs; the Office of Biomedical Laboratory Research and Development Service (Merit Award I01BX002237 to H.-W.C.); the 100 Talents Projects of Chinese Academy of Sciences, the National Natural Science Foundation, the Guangzhou Healthcare Collaborative Innovation Programs and the Key Basic Research Program of China (grant 81373325, grant 20150820225 and 973 program grant 2013CB910601 to Y.X.); the Howard Hughes Medical Institute; the NIH (P30CA014195, DK057978, HL088093 and HL105278 to R.M.E.) and grants from Ipsen Biomeasure and the Samuel Waxman Cancer Research Foundation (to R.M.E.); the NIH (R01CA150197 and R01CA165263 to H.-J. K.); the US Department of Defense (PC111467 to C.P.E.) and a Stand Up To Cancer—Prostate Cancer Foundation—Prostate Dream Team Translational Cancer Research Grant. This research grant is made possible by the generous support of the Movember Foundation. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research (SU2C-AACR-PCF DT0812 to C.P.E.) and the NIH (R01CA168601 to A.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

H.-W.C., J.W. and J.X.Z. conceived and initiated the research. H.-W.C., J.W., Y.X., R.M.E. and H.-J.K. designed the research. J.W., J.X.Z., X.X., D.C., Y.Z., Z.D., Q.X., J.C.Y. and M.C.L. performed the experiments. H.-W.C., J.W., J.X.Z., J.X., Y.X., M.C.L. and A.D.B. analyzed the data. H.-W.C., J.W., Y.X., A.C.G., C.P.E., K.S.L., H.J.K. and R.M.E. wrote and/or edited the manuscript.

Corresponding authors

Correspondence to Yong Xu or Hong-Wu Chen.

Ethics declarations

Competing interests

H.W.C., J.X.Z., J.W. and Y.X. are co-inventors of a patent application covering methods of treating cancer with ROR-γ inhibitors. The other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 (PDF 4575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zou, J., Xue, X. et al. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med 22, 488–496 (2016). https://doi.org/10.1038/nm.4070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing