Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis

Abstract

Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non–cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte–mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MHCI expression is reduced on spinal MNs in end-stage ALS.
Figure 2: ALS astrocytes induce downregulation of MHCI expression in MNs.
Figure 3: H2k expression protects MNs from ALS astrocyte–induced toxicity and delays disease progression in SOD1G93A mice.
Figure 4: ALS astrocytes express MHCI inhibitory receptors.
Figure 5: HLA-F expression protects human MNs from ALS astrocyte–induced toxicity.

Similar content being viewed by others

References

  1. Hardiman, O., van den Berg, L.H. & Kiernan, M.C. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 639–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, R.H. Jr. Amyotrophic lateral sclerosis. Insights from genetics. Arch. Neurol. 54, 1246–1250 (1997).

    Article  PubMed  Google Scholar 

  3. Kwiatkowski, T.J. Jr. et al. Mutations in the FUS (TLS) gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Deerlin, V.M. et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409–416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vance, C. et al. Mutations in FUS, an RNA-processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bosco, D.A. et al. WT and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat. Neurosci. 13, 1396–1403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gruzman, A. et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 104, 12524–12529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Ilieva, H., Polymenidou, M. & Cleveland, D.W. Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Philips, T. & Rothstein, J.D. Glial cells in amyotrophic lateral sclerosis. Exp. Neurol. 262, 111–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Haidet-Phillips, A.M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Re, D.B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–1008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boulanger, L.M. Immune proteins in brain development and synaptic plasticity. Neuron 64, 93–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Tian, L., Ma, L., Kaarela, T. & Li, Z. Neuro-immune cross-talk in the central nervous system and its significance for neurological diseases. J. Neuroinflammation 9, 155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Needleman, L.A., Liu, X.B., El-Sabeawy, F., Jones, E.G. & McAllister, A.K. MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc. Natl. Acad. Sci. USA 107, 16999–17004 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fourgeaud, L. et al. MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc. Natl. Acad. Sci. USA 107, 22278–22283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goddard, C.A., Butts, D.A. & Shatz, C.J. Regulation of CNS synapses by neuronal MHC class I. Proc. Natl. Acad. Sci. USA 104, 6828–6833 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huh, G.S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, H. et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509, 195–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McConnell, M.J., Huang, Y.H., Datwani, A. & Shatz, C.J. H2-Kb and H2-Db regulate cerebellar long-term depression and limit motor learning. Proc. Natl. Acad. Sci. USA 106, 6784–6789 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Freria, C.M., Zanon, R.G., Santos, L.M. & Oliveira, A.L. Major histocompatibility complex class I expression and glial reaction influence spinal motoneuron synaptic plasticity during the course of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 518, 990–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, T. et al. Human LILRB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science 341, 1399–1404 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Nardo, G. et al. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain 136, 3305–3332 (2013).

    Article  PubMed  Google Scholar 

  26. Staats, K.A. et al. β-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Front. Cell. Neurosci. 7, 249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lindå, H., Hammarberg, H., Piehl, F., Khademi, M. & Olsson, T. Expression of MHC class I heavy chain and β2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J. Neuroimmunol. 101, 76–86 (1999).

    Article  PubMed  Google Scholar 

  28. Frakes, A.E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miranda, C.J. et al. Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11, 542–552 (2012).

    Article  PubMed  Google Scholar 

  30. Clarke, L.E. & Barres, B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, J. et al. The expression pattern of classical MHC class I molecules in the development of mouse central nervous system. Neurochem. Res. 38, 290–299 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Israelson, A. et al. Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded SOD1. Neuron 86, 218–232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marchetto, M.C. et al. Non–cell autonomous effect of human SOD1G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dodge, J.C. et al. Delivery of AAV-IGF1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol. Ther. 16, 1056–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Chakrabarty, P. et al. Capsid serotype and timing of injection determine AAV transduction in the neonatal mouse brain. PLoS One 8, e67680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robbins, K.L., Glascock, J.J., Osman, E.Y., Miller, M.R. & Lorson, C.L. Defining the therapeutic window in a severe animal model of spinal muscular atrophy. Hum. Mol. Genet. 23, 4559–4568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tay, C.H., Szomolanyi-Tsuda, E. & Welsh, R.M. Control of infections by NK cells. Curr. Top. Microbiol. Immunol. 230, 193–220 (1998).

    CAS  PubMed  Google Scholar 

  40. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Long, E.O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Chiu, I.M. et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl. Acad. Sci. USA 105, 17913–17918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goodridge, J.P., Burian, A., Lee, N. & Geraghty, D.E. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J. Immunol. 191, 3553–3562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meyer, K. et al. Direct conversion of patient fibroblasts demonstrates non–cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl. Acad. Sci. USA 111, 829–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Oliveira, A.L. et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc. Natl. Acad. Sci. USA 101, 17843–17848 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thams, S. et al. Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. J. Neurosci. 29, 13503–13515 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivera-Quiñones, C. et al. Absence of neurological deficits following extensive demyelination in a class I–deficient murine model of multiple sclerosis. Nat. Med. 4, 187–193 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hansen, T.H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9, 503–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 12, 627–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Filézac de L'Etang, A. et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype–selective ER stress in ALS. Nat. Neurosci. 18, 227–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Lautenschlaeger, J., Prell, T. & Grosskreutz, J. Endoplasmic reticulum stress and the ER mitochondrial calcium cycle in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 13, 166–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase 1 in an ALS model. Proc. Natl. Acad. Sci. USA 103, 6025–6030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Díaz-Amarilla, P. et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 108, 18126–18131 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moscoso, J., Serrano-Vela, J.I., Pacheco, R. & Arnaiz-Villena, A. HLA-G, HLA-E and HLA-F: allelism, function and evolution. Transpl. Immunol. 17, 61–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Bevan, A.K. et al. Systemic gene delivery in large species for targeting spinal cord, brain and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Foust, K.D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Foust, K.D. et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol. Ther. 21, 2148–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyazaki, Y. et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat. Med. 18, 1136–1141 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Meyer, K. et al. Improving single-injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol. Ther. 23, 477–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Leitner, M., Menzies, S. & Lutz, C. Working with ALS Mice: Guidelines for Preclinical Testing and Colony Management (The Jackson Laboratory, Bar Harbor, Maine, USA, 2009).

  61. Noble, M. & Mayer-Proschel, M. Culture of Astrocytes, Oligodendrocytes and O-2A Progenitor Cells (MIT press, Cambridge, 1998).

  62. Ray, J. & Gage, F.H. Differential properties of adult rat and mouse brain–derived neural stem or progenitor cells. Mol. Cell. Neurosci. 31, 560–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hester, M.E. et al. Two-factor reprogramming of human neural stem cells into pluripotency. PLoS One 4, e7044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, J.B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Hester, M.E. et al. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells by using gene-delivered transcription factor codes. Mol. Ther. 19, 1905–1912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ludolph, A.C. et al. Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    Article  PubMed  Google Scholar 

  68. Thompson, A., van der Slik, A.R., Koning, F. & van Bergen, J. An improved RT-PCR method for the detection of killer cell immunoglobulin-like receptor (KIR) transcripts. Immunogenetics 58, 865–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Syken, J. & Shatz, C.J. Expression of T cell receptor beta locus in central nervous system neurons. Proc. Natl. Acad. Sci. USA 100, 13048–13053 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishogami, S. et al. Clinical-pathological implication of human leukocyte antigen–F–positive gastric adenocarcinoma. J. Surg. Res. 184, 802–806 (2013).

    Article  CAS  Google Scholar 

  71. Zhang, J.G. et al. Lesion HLA-F expression is irrelevant to prognosis for patients with gastric cancer. Hum. Immunol. 74, 828–832 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Shatz (Stanford University) for critical discussions; S. Eckardt for expert editorial assistance; the National Disease Research Institute (NDRI), A. Burghes (Ohio State University), J.R. Mendell (Nationwide Children's Hospital), J. Glass and M. Gearing (Emory University; supported by US National Institutes of Health (NIH)-NINDS grant no. P30NS055077) for providing human spinal cord specimens; F. Gage (Salk Institute) for providing human post-mortem neural progenitor cells (NPCs) that were used to generate non-ALS astrocytes; M. Hester for guidance with iPSC generation; T. Jessell (Columbia University) for HBG3 cells; and K. Campbell for technical assistance. This work was supported by NIH grants R01-NS644912 (B.K.K.) and RC2-NS69476 (B.K.K.), funding from the Robert Packard Center for ALS Research (B.K.K.), the Project A.L.S. (B.K.K.) and the Helping Link Foundation (B.K.K.). The authors that were a part of this work also received research fellowships from the Swiss National Science Foundation (K.M.), the Marie Curie Foundation (L.F.), the NINDS Training in Neuromuscular Disease (A.E.F.), the Ohio State University Presidential Fellowship (S.W.S.) and the Ohio State University and Nationwide Children's Hospital Muscle Group Fellowship (S.W.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments. Isolation of mouse astrocytes, microglia and NPCs was performed by S.W.S., C.J.M., L.B., A.E.F. and S.L.; human astrocyte cultures were done by S.W.S., C.J.M., K.M. and L.F.; neuronal cell differentiation and coculture experiments were performed by S.W.S., C.J.M., K.M., A.E.F. and S.L.; in situ hybridization of H2d transcripts was performed by M.J.M.; RT-PCR and immunocytochemistry analyses were done by S.W.S., C.J.M., L.B. and A.K.B.; lentivirus production was done by S.W.S., C.J.M., L.B., K.M., A.E.F., L.F. and S.L.; and data was analyzed by S.W.S., C.J.M., L.B., K.M., A.E.F., L.F., S.L., A.K.B., K.D.F., M.J.M., C.M.W. and B.K.K. The manuscript and figures were prepared by S.W.S., C.J.M. and B.K.K., with input from all coauthors.

Corresponding author

Correspondence to Brian K Kaspar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Miranda, C., Braun, L. et al. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med 22, 397–403 (2016). https://doi.org/10.1038/nm.4052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing