Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice

Abstract

The lateral habenula (LHb) encodes aversive signals, and its aberrant activity contributes to depression-like symptoms. However, a limited understanding of the cellular mechanisms underlying LHb hyperactivity has precluded the development of pharmacological strategies to ameliorate depression-like phenotypes. Here we report that an aversive experience in mice, such as foot-shock exposure (FsE), induces LHb neuronal hyperactivity and depression-like symptoms. This occurs along with increased protein phosphatase 2A (PP2A) activity, a known regulator of GABAB receptor (GABABR) and G protein–gated inwardly rectifying potassium (GIRK) channel surface expression. Accordingly, FsE triggers GABAB1 and GIRK2 internalization, leading to rapid and persistent weakening of GABAB-activated GIRK-mediated (GABAB-GIRK) currents. Pharmacological inhibition of PP2A restores both GABAB-GIRK function and neuronal excitability. As a consequence, PP2A inhibition ameliorates depression-like symptoms after FsE and in a learned-helplessness model of depression. Thus, GABAB-GIRK plasticity in the LHb represents a cellular substrate for aversive experience. Furthermore, its reversal by PP2A inhibition may provide a novel therapeutic approach to alleviate symptoms of depression in disorders that are characterized by LHb hyperactivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FsE induces cellular adaptations in the LHb and a depression-like phenotype.
Figure 2: Subcellular plasticity of GABABRs and GIRKs in the LHb.
Figure 3: PP2A inhibition rescues GABAB-GIRK function in the LHb after FsE.
Figure 4: GABABR-dependent control of activity in the LHb after FsE.
Figure 5: PP2A inhibition in vivo rescues GABAB-GIRK function and hyperexcitability in the LHb.
Figure 6: PP2A inhibition ameliorates core symptoms of depression.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Knoll, A.T. & Carlezon, W.A.J. Jr. Dynorphin, stress and depression. Brain Res. 1314, 56–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Morris, J.S., Smith, K.A., Cowen, P.J., Friston, K.J. & Dolan, R.J. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. Neuroimage 10, 163–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Shumake, J., Edwards, E. & Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 963, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Chourbaji, S. et al. Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Brain Res. Protoc. 16, 70–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Proulx, C.D., Hikosaka, O. & Malinow, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 17, 1146–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, K. et al. β-CaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016–1020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown, P.L. & Shepard, P.D. Lesions of the fasciculus retroflexus alter foot-shock–induced cFos expression in the mesopontine rostromedial tegmental area of rats. PLoS One 8, e60678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagdy, G., Juhasz, G. & Gonda, X. A new clinical evidence-based gene-environment interaction model of depression. Neuropsychopharmacol. Hung. 14, 213–220 (2012).

    PubMed  Google Scholar 

  11. Fatemi, S.H., Folsom, T.D. & Thuras, P.D. Deficits in GABAB receptor system in schizophrenia and mood disorders: a post-mortem study. Schizophr. Res. 128, 37–43 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cryan, J.F. & Slattery, D.A. GABAB receptors and depression. Current status. Adv. Pharmacol. 58, 427–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Kawaura, K., Honda, S., Soeda, F., Shirasaki, T. & Takahama, K. Novel antidepressant-like action of drugs possessing GIRK channel–blocking action in rats. Yakugaku Zasshi 130, 699–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Llamosas, N., Bruzos-Cidón, C., Rodríguez, J.J., Ugedo, L. & Torrecilla, M. Deletion of GIRK2 subunit of GIRK channels alters the 5-HT1A receptor–mediated signaling and results in a depression-resistant behavior. Int. J. Neuropsychopharmacol. 18, pyv051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terunuma, M., Pangalos, M.N. & Moss, S.J. Functional modulation of GABAB receptors by protein kinases and receptor trafficking. Adv. Pharmacol. 58, 113–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Overmier, J.B. & Seligman, M.E. Effects of inescapable shock upon subsequent escape and avoidance responding. J. Comp. Physiol. Psychol. 63, 28–33 (1967).

    Article  CAS  PubMed  Google Scholar 

  17. Vollmayr, B. & Henn, F.A. Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 8, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lecca, S., Meye, F.J. & Mameli, M. The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur. J. Neurosci. 39, 1170–1178 (2014).

    Article  PubMed  Google Scholar 

  19. Breier, A. et al. Controllable and uncontrollable stress in humans: alterations in mood and neuroendocrine and psychophysiological function. Am. J. Psychiatry 144, 1419–1425 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Maier, S.F. Learned helplessness and animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 8, 435–446 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Stamatakis, A.M. & Stuber, G.D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lüthi, A. & Lüscher, C. Pathological circuit function underlying addiction and anxiety disorders. Nat. Neurosci. 17, 1635–1643 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Porsolt, R.D., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336 (1977).

    CAS  PubMed  Google Scholar 

  24. Meye, F.J. et al. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat. Neurosci. 18, 376–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shabel, S.J., Proulx, C.D., Piriz, J. & Malinow, R. Mood regulation. GABA and glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lüscher, C. & Slesinger, P.A. Emerging roles for G protein–gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci. 11, 301–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. & Clapham, D.E. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325, 321–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Buynitsky, T. & Mostofsky, D.I. Restraint stress in biobehavioral research: recent developments. Neurosci. Biobehav. Rev. 33, 1089–1098 (2009).

    Article  PubMed  Google Scholar 

  29. Takahashi, L.K., Nakashima, B.R., Hong, H. & Watanabe, K. The smell of danger: a behavioral and neural analysis of predator odor–induced fear. Neurosci. Biobehav. Rev. 29, 1157–1167 (2005).

    Article  PubMed  Google Scholar 

  30. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hearing, M. et al. Repeated cocaine weakens GABAB-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80, 159–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Padgett, C.L. et al. Methamphetamine-evoked depression of GABAB receptor signaling in GABA neurons of the VTA. Neuron 73, 978–989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guetg, N. et al. NMDA receptor–dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1 . Proc. Natl. Acad. Sci. USA 107, 13924–13929 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morinobu, S. et al. Influence of immobilization stress on the expression and phosphatase activity of protein phosphatase 2A in the rat brain. Biol. Psychiatry 54, 1060–1066 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mucic, G., Sase, S., Stork, O., Lubec, G. & Li, L. Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse. Behav. Brain Res. 280, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, J. et al. Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage–induced defense mechanisms. Proc. Natl. Acad. Sci. USA 106, 11697–11702 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jourdain, P., Fukunaga, K. & Muller, D. Calcium- and calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J. Neurosci. 23, 10645–10649 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lalive, A.L. et al. Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity. J. Neurosci. 34, 5107–5114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei, D. et al. Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C and CDK1, and homologous recombination repair. Clin. Cancer Res. 19, 4422–4432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, M., Perova, Z., Arenkiel, B.R. & Li, B. Synaptic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. J. Neurosci. 34, 7485–7492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strekalova, T., Spanagel, R., Bartsch, D., Henn, F.A. & Gass, P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29, 2007–2017 (2004).

    Article  PubMed  Google Scholar 

  42. Ménard, C., Hodes, G.E. & Russo, S.J. Pathogenesis of depression: insights from human and rodent studies. Neuroscience http://dx.doi.org/10.1016/j.neuroscience.2015.05.053 (2015).

  43. González-Maeso, J., Wise, A., Green, A. & Koenig, J.A. Agonist-induced desensitization and endocytosis of heterodimeric GABAB receptors in CHO-K1 cells. Eur. J. Pharmacol. 481, 15–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Beaulieu, J.M. et al. An Akt–β-arrestin 2–PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Chan, S.F. & Sucher, N.J. An NMDA receptor signaling complex with protein phosphatase 2A. J. Neurosci. 21, 7985–7992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lavine, N. et al. G protein–coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem. 277, 46010–46019 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Nobles, M., Benians, A. & Tinker, A. Heterotrimeric G proteins precouple with G protein–coupled receptors in living cells. Proc. Natl. Acad. Sci. USA 102, 18706–18711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riven, I., Iwanir, S. & Reuveny, E. GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron 51, 561–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Clancy, S.M., Boyer, S.B. & Slesinger, P.A. Co-regulation of natively expressed pertussis toxin–sensitive muscarinic receptors with G protein–activated potassium channels. J. Neurosci. 27, 6388–6399 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luján, R., Marron Fernandez de Velasco, E., Aguado, C. & Wickman, K. New insights into the therapeutic potential of Girk channels. Trends Neurosci. 37, 20–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jhou, T.C., Fields, H.L., Baxter, M.G., Saper, C.B. & Holland, P.C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tye, K.M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Nemeroff, C.B. The neurobiology of depression. Sci. Am. 278, 42–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Henn, F.A. Pharmacogenetic studies of depression. Biol. Psychiatry 63, 1101–1102 (2008).

    Article  PubMed  Google Scholar 

  56. Jhou, T.C. et al. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J. Neurosci. 33, 7501–7512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mameli, M., Balland, B., Luján, R. & Lüscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Fanselow, M.S. & Bolles, R.C. Naloxone- and shock-elicited freezing in the rat. J. Comp. Physiol. Psychol. 93, 736–744 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Can, A. et al. The mouse forced-swim test. J. Vis. Exp. 59, e3638 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank C. Bellone, M. Carta, E. Schwartz, C. Lüscher, F.J. Meye and members of the Mameli laboratory for discussions and comments on the manuscript. This work was supported by funds from the INSERM Atip-Avenir program (M.M.), a European Research Council starting grant (grant no. SalienSy 335333; M.M.), the Paris School of Neuroscience Network (ENP) Chair of Excellence (M.M.) and the Junta de Comunidades de Castilla–La Mancha (grant no. PPII-2014-005-P; R.L.). The Mameli laboratory is part of the Initiative of Excellence Labex BioPsy network. We thank J. Kovach and Lixte Biotechnology Holdings, Inc. for the gift of LB-100. The monoclonal antibody specific to GABAB1 (clone N93A/49) was developed by the University of California, Davis–US National Institutes of Health NeuroMab facility (Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and M.M. performed and analyzed all of the in vitro electrophysiological recordings and behavioral experiments with the help of A.T.; A.P. and D.H. designed and performed biochemical assays; I.M. performed immunohistochemistry and designed the viral vector; R.L. performed electron microscopy and analyzed the data; and S.L. and M.M. wrote the manuscript.

Corresponding author

Correspondence to Manuel Mameli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 6081 kb)

Supplementary Data

Supplementary Source Data (XLSX 45 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecca, S., Pelosi, A., Tchenio, A. et al. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat Med 22, 254–261 (2016). https://doi.org/10.1038/nm.4037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing