Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice

Abstract

Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots1,2,3,4, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype5,6,7,8, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rgnull (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proliferation of human adipogenic precursors requires angiogenesis.
Figure 2: The induction of a human brite/beige phenotype in adipocytes derived from capillary networks.
Figure 3: Characteristics and metabolic effects of human brite/beige adipocytes derived from capillary networks.
Figure 4: Mechanism for metabolic effects of human brite/beige adipocytes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Collins, S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat. Rev. Endocrinol. 10, 157–163 (2014).

    CAS  PubMed  Google Scholar 

  2. Lee, Y.H., Petkova, A.P., Mottillo, E.P. & Granneman, J.G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Reports 5, 1196–1203 (2013).

    CAS  PubMed  Google Scholar 

  4. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  5. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

  6. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    CAS  PubMed  Google Scholar 

  8. Lidell, M.E., Betz, M.J. & Enerbäck, S. Two types of brown adipose tissue in humans. Adipocyte 3, 63–66 (2014).

    CAS  PubMed  Google Scholar 

  9. Crandall, D.L., Hausman, G.J. & Kral, J.G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4, 211–232 (1997).

    CAS  PubMed  Google Scholar 

  10. Han, J. et al. The spatiotemporal development of adipose tissue. Development 138, 5027–5037 (2011).

    CAS  PubMed  Google Scholar 

  11. Bouloumié, A., Lolmède, K., Sengenès, C., Galitzky, J. & Lafontan, M. Angiogenesis in adipose tissue. Ann. Endocrinol. (Paris) 63, 91–95 (2002).

    Google Scholar 

  12. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta, R.K. et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15, 230–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Tran, K.V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van de Vyver, M., Andrag, E., Cockburn, I.L. & Ferris, W.F. Thiazolidinedione-induced lipid droplet formation during osteogenic differentiation. J. Endocrinol. 223, 119–132 (2014).

    CAS  PubMed  Google Scholar 

  17. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cypess, A.M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  20. Orlicky, D.J., Monks, J., Stefanski, A.L. & McManaman, J.L. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PLoS One 8, e66837 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcinkiewicz, A., Gauthier, D., Garcia, A. & Brasaemle, D.L. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281, 11901–11909 (2006).

    CAS  PubMed  Google Scholar 

  22. Zhang, Y., Matheny, M., Zolotukhin, S., Tumer, N. & Scarpace, P.J. Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of beta3-adrenergic agonists, retinoic acid, leptin and fasting. Biochim. Biophys. Acta 1584, 115–122 (2002).

    CAS  PubMed  Google Scholar 

  23. Behan, J.W. et al. Activation of adipose tissue macrophages in obese mice does not require lymphocytes. Obesity (Silver Spring) 21, 1380–1388 (2013).

    CAS  Google Scholar 

  24. Xiao, C., Goldgof, M., Gavrilova, O. & Reitman, M.L. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22°C. Obesity (Silver Spring) 23, 1450–1459 (2015).

    CAS  Google Scholar 

  25. Hocking, S.L. et al. Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia 58, 1587–1600 (2015).

    CAS  PubMed  Google Scholar 

  26. Wang, G.X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson, R.S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306 (1997).

    CAS  PubMed  Google Scholar 

  28. Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat. Genet. 40, 943–945 (2008).

    CAS  PubMed  Google Scholar 

  29. Denning, G.M. et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides 29, 83–92 (2008).

    CAS  PubMed  Google Scholar 

  30. Miller, A.M. et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res. 107, 650–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brestoff, J.R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    CAS  PubMed  Google Scholar 

  32. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishio, M. et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16, 394–406 (2012).

    CAS  PubMed  Google Scholar 

  35. Elias, I. et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61, 1801–1813 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl. Acad. Sci. USA 109, 5874–5879 (2012).

    CAS  PubMed  Google Scholar 

  37. Chang, L. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126, 1067–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fitzgibbons, T.P. et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol. 301, H1425–H1437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rojas-Rodriguez, R. et al. Adipose tissue angiogenesis assay. Methods Enzymol. 537, 75–91 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brehm, M.A. et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγnull mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 119, 2778–2788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shabalina, I.G., Kramarova, T.V., Nedergaard, J. & Cannon, B. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively. Biochem. J. 399, 405–414 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by US National Institutes of Health grants R01DK089101 (to S.C.), R24OD018259 (to M.A.B.), R01DK089185 (to M.P.C.), R01-DK080756, R01-DK079999, R24-DK090963 and U24-DK093000 (all to J.K.K.), and American Heart Association grant 12FTF11260010 (to T.F.). The authors acknowledge the use of the University of Massachusetts (UMASS) Flow Cytometry Core, the UMASS Genomics Core, the UMASS Mouse Phenotyping Center and the UMASS Morphology Core for conducting these studies.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.M., S.C., M.A.B. and M.P.C. designed the experiments; S.Y.M. and R.R.-R. obtained adipose tissue, generated cells and performed experiments on cells; J.K. and S.Y.M. performed experiments on mice; A.B., M.N., T.F. and M.P.C. obtained and analyzed perivascular adipose tissue samples; J.H.K., H.-L.N. and J.K.K. performed and analyzed metabolic phenotyping experiments. S.Y.M. and S.C. wrote the manuscript. All authors contributed to editing the manuscript. S.C. managed the project.

Corresponding author

Correspondence to Silvia Corvera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–4 and Supplementary Table 1–2 (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, S., Kady, J., Nam, M. et al. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22, 312–318 (2016). https://doi.org/10.1038/nm.4031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing