Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

Abstract

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal activation of hindlimb motoneuron during locomotion.
Figure 2: Design, fabrication and validation of spatially selective spinal implants.
Figure 3: Software to adjust spatiotemporal neuromodulation in real-time during locomotion.
Figure 4: Spatiotemporal neuromodulation reproduces the natural pattern of motoneuron activation.
Figure 5: Selective and gradual modulation of extension and flexion components.
Figure 6: Spatiotemporal neuromodulation improves motor control after clinically relevant SCI.

Similar content being viewed by others

References

  1. Borton, D., Micera, S., Millán, Jdel.R. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv2 (2013).

    Article  PubMed  Google Scholar 

  2. Lozano, A.M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424 (2013).

    Article  CAS  Google Scholar 

  3. Barthélemy, D., Leblond, H. & Rossignol, S. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J. Neurophysiol. 97, 1986–2000 (2007).

    Article  PubMed  Google Scholar 

  4. Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Holinski, B.J., Everaert, D.G., Mushahwar, V.K. & Stein, R.B. Real-time control of walking using recordings from dorsal root ganglia. J. Neural Eng. 10, 056008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wenger, N. et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6, 255ra133 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Carhart, M.R., He, J., Herman, R., D'Luzansky, S. & Willis, W.T. Epidural spinal–cord stimulation facilitates recovery of functional walking following incomplete spinal–cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 32–42 (2004).

    Article  PubMed  Google Scholar 

  9. Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P. & Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gerasimenko, Y.P. et al. Noninvasive reactivation of motor descending control after paralysis. J. Neurotrauma 32, 1968–1980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Herman, R., He, J., D'Luzansky, S., Willis, W. & Dilli, S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40, 65–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rattay, F., Minassian, K. & Dimitrijevic, M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. Quantitative analysis by computer modeling. Spinal Cord 38, 473–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ladenbauer, J., Minassian, K., Hofstoetter, U.S., Dimitrijevic, M.R. & Rattay, F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 637–645 (2010).

    Article  PubMed  Google Scholar 

  15. Hofstoetter, U.S. et al. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. J. Neurophysiol. 114, 400–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerasimenko, Y.P. et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J. Neurosci. Methods 157, 253–263 (2006).

    Article  PubMed  Google Scholar 

  17. Sayenko, D.G., Angeli, C.A., Harkema, S.J., Edgerton, V.R. & Gerasimenko, Y.P. Neuromodulation of evoked muscle potentials induced by epidural spinal cord stimulation in paralyzed individuals. J. Neurophysiol. 111, 1088–1099 (2014).

    Article  PubMed  Google Scholar 

  18. Danner, S.M. et al. Human spinal locomotor control is based on flexibly organized burst generators. Brain 138, 577–588 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Edgerton, V.R. et al. Training locomotor networks. Brain Res. Rev. 57, 241–254 (2008).

    Article  PubMed  Google Scholar 

  20. Rejc, E., Angeli, C. & Harkema, S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS ONE 10, e0133998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yakovenko, S., Mushahwar, V., VanderHorst, V., Holstege, G. & Prochazka, A. Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J. Neurophysiol. 87, 1542–1553 (2002).

    Article  PubMed  Google Scholar 

  22. Cappellini, G., Ivanenko, Y.P., Dominici, N., Poppele, R.E. & Lacquaniti, F. Migration of motor pool activity in the spinal cord reflects body mechanics in human locomotion. J. Neurophysiol. 104, 3064–3073 (2010).

    Article  PubMed  Google Scholar 

  23. Ivanenko, Y.P. et al. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol. 90, 3555–3565 (2003).

    Article  PubMed  Google Scholar 

  24. Dominici, N. et al. Locomotor primitives in newborn babies and their development. Science 334, 997–999 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Berniker, M., Jarc, A., Bizzi, E. & Tresch, M.C. Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc. Natl. Acad. Sci. USA 106, 7601–7606 (2009).

    Article  PubMed  Google Scholar 

  27. Lee, D.D. & Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lavrov, I. et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J. Neurosci. 28, 6022–6029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minassian, K. et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42, 401–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ichiyama, R.M. et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J. Neurosci. 28, 7370–7375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gad, P. et al. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J. Neuroeng. Rehabil. 9, 38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Consortium for Addressing Paralysis through Spinal Stimulation Technologies. Framework for a Research Study on Epidural Spinal Stimulation to Improve Bladder, Bowel, and Sexual Function in Individuals with Spinal Cord Injuries. (National Institutes of Health, 2015).

  33. Bizzi, E., Tresch, M.C., Saltiel, P. & d'Avella, A. New perspectives on spinal motor systems. Nat. Rev. Neurosci. 1, 101–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Bernstein, N. The Co-ordination and Regulation of Movements (Pergamon, 1967).

  35. Giszter, S.F. Motor primitives—new data and future questions. Curr. Opin. Neurobiol. 33, 156–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. La Scaleia, V., Ivanenko, Y.P., Zelik, K.E. & Lacquaniti, F. Spinal motor outputs during step-to-step transitions of diverse human gaits. Front. Hum. Neurosci. 8, 305 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Hägglund, M. et al. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc. Natl. Acad. Sci. USA 110, 11589–11594 (2013).

    Article  PubMed  Google Scholar 

  38. Levine, A.J. et al. Identification of a cellular node for motor control pathways. Nat. Neurosci. 17, 586–593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tripodi, M., Stepien, A.E. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Grillner, S. & Jessell, T.M. Measured motion: searching for simplicity in spinal locomotor networks. Curr. Opin. Neurobiol. 19, 572–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arber, S. Motor circuits in action: specification, connectivity, and function. Neuron 74, 975–989 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Bourane, S. et al. Identification of a spinal circuit for light touch and fine motor control. Cell 160, 503–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hart, C.B. & Giszter, S.F. A neural basis for motor primitives in the spinal cord. J. Neurosci. 30, 1322–1336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L.C. & Giszter, S.F. A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs. J. Neurophysiol. 103, 573–590 (2010).

    Article  PubMed  Google Scholar 

  45. Sayenko, D.G., Angeli, C., Harkema, S.J., Edgerton, V.R. & Gerasimenko, Y.P. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 111, 1088–1099 (2014).

    Article  PubMed  Google Scholar 

  46. Zeng, F.G., Rebscher, S., Harrison, W., Sun, X. & Feng, H. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Capaday, C. The special nature of human walking and its neural control. Trends Neurosci. 25, 370–376 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Clarac, F., Cattaert, D. & Le Ray, D. Central control components of a 'simple' stretch reflex. Trends Neurosci. 23, 199–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Canbay, S. et al. Anatomical relationship and positions of the lumbar and sacral segments of the spinal cord according to the vertebral bodies and the spinal roots. Clin. Anat. 27, 227–233 (2014).

    Article  PubMed  Google Scholar 

  50. Mariani, B., Jiménez, M.C., Vingerhoets, F.J. & Aminian, K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease. IEEE Trans. Biomed. Eng. 60, 155–158 (2013).

    Article  PubMed  Google Scholar 

  51. Afshar, P. et al. A translational platform for prototyping closed-loop neuromodulation systems. Front. Neural Circuits 6, 117 (2012).

    PubMed  Google Scholar 

  52. Minev, I.R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Dominici, N. et al. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med. 18, 1142–1147 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Stieglitz, T. & Meyer, J.U. Implantable microsystems. Polyimide-based neuroprostheses for interfacing nerves. Med. Device Technol. 10, 28–30 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank people who have helped over the past 6 years to take care of injured animals and to test multiple iterations of neural implants. We also would like to thank D. Pioletti for providing access to the microcomputed tomography scanner. N.W. is a participant in the Charité Clinical Scientist Program funded by the Charité–Universitätsmedizin Berlin and the Berlin Institute of Health. Funding was provided by the European Commission's Seventh Framework Programme (CP-IP 258654, NeuWALK, G.C., S.M., E.B., J.B. and P.D.); a Starting Grant from the European Research Council (ERC 261247, Walk Again, G.C.); the Russian Science Foundation (RSF grant 14-15-00788, P.M.) and the Swiss National Science Foundation Centre of Competence in Research (NCCR) in Robotics (G.C., S.L., S.M.), Dynamo project (S.M.) and NanoTera.ch program (SpineRepair) (G.C., S.L. and S.M.).

Author information

Authors and Affiliations

Authors

Contributions

P.M. and M.C. contributed equally as second authors to this work. N.W., P.M., J.B., N.P. and G.C. developed and performed the surgeries. N.W., E.M.M., J.G., P.M., J.D., L.B., S.D., M.C., L.A. and G.C. performed in vivo experiments. N.W., E.M.M., J.G., C.G.L.G., L.A., N.D. and G.C. analyzed functional data. N.W., E.M.M. and J.G. conducted the statistical analysis. S.P.L., P.D., I.R.M., A.H., P.M., O.H., S.K. and F.S. developed the implant technology. M.C., A.M. and S.M. conducted computational simulations. J.K., Q.B. and N.P. conducted anatomical evaluations. N.W., E.M.M., P.M., M.C., J.D., S.M., E.B. and G.C. conceived experiments. R.v.d.B., E.B., J.B., L.B. and S.D. were responsible for the animal models. N.W., E.M.M., L.A., J.G., C.G.L.G., and G.C. prepared the figures with the help of the other authors. G.C. wrote the manuscript, and all authors contributed to its editing. G.C. supervised and coordinated all the aspects of the work.

Corresponding author

Correspondence to Grégoire Courtine.

Ethics declarations

Competing interests

G.C., N.W., P.M., M.C., L.A., J.B., I.R.M., E.M.M., S.M. and S.P.L. hold various patents on electrode implant designs (WO2011/157714), chemical neuromodulation therapies (WO2015/000800), spatiotemporal neuromodulation algorithms (WO2015/063127), and robot-assisted rehabilitation enabled by neuromodulation therapies (WO2013/179230). G.C., S.L., S.M. and J.B. are founders and shareholders of G-Therapeutics SA, a company developing neuroprosthetic systems in direct relationship with the present work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–2 (PDF 11392 kb)

Tailored spinal implant to achieve spatial selectivity.

This movie illustrates the spatial distribution of hindlimb motoneurons, the design of spatially selective spinal implant targeting specific subsets of dorsal roots, and the ability of stimulation delivered through this implant to elicit limb and direction specific motor responses (MP4 23363 kb)

Spatiotemporal neuromodulation therapies after complete SCI.

This movie shows the reconstructed spatiotemporal map of motoneuron activation during locomotion in intact rats, the online monitoring system, the complete SCI model, the ability of spatiotemporal neuromodulation to reproduce natural motoneuron activation dynamics during locomotion, and the tuning of extension versus flexion hotspots with increase in stimulation amplitude. (MP4 25020 kb)

Spatiotemporal neuromodulation improves motor control after clinically relevant SCI.

This movie shows the anatomical impact of the contusion SCI, the ability of spatiotemporal neuromodulation to enable robust locomotion early after the injury, and the ability of spatiotemporal neuromodulation to enable locomotion overground and along a staircase in the chronic stage of the SCI. (MP4 27666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenger, N., Moraud, E., Gandar, J. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22, 138–145 (2016). https://doi.org/10.1038/nm.4025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing