Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

Abstract

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population4. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kynurenine pathway of tryptophan metabolism.
Figure 2: Kmonull mice are protected against lung, liver and kidney injury during experimental AP.
Figure 3: Discovery of the KMO inhibitor GSK180.
Figure 4: Therapeutic administration of GSK180 protects against lung, liver and kidney injury during experimental AP in rats.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

References

  1. Lowenfels, A.B., Maisonneuve, P. & Sullivan, T. The changing character of acute pancreatitis: epidemiology, etiology, and prognosis. Curr. Gastroenterol. Rep. 11, 97–103 (2009).

    PubMed  Google Scholar 

  2. Pastor, C.M., Matthay, M.A. & Frossard, J.L. Pancreatitis-associated acute lung injury: new insights. Chest 124, 2341–2351 (2003).

    PubMed  Google Scholar 

  3. McKay, C.J. & Buter, A. Natural history of organ failure in acute pancreatitis. Pancreatology 3, 111–114 (2003).

    CAS  PubMed  Google Scholar 

  4. Skouras, C. et al. Early organ dysfunction affects long-term survival in acute pancreatitis patients. HPB (Oxford) (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Vécsei, L., Szalárdy, L., Fülöp, F. & Toldi, J. Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12, 64–82 (2013).

    PubMed  Google Scholar 

  6. Mole, D.J. et al. Tryptophan catabolites in mesenteric lymph may contribute to pancreatitis-associated organ failure. Br. J. Surg. 95, 855–867 (2008).

    CAS  PubMed  Google Scholar 

  7. Mole, D.J., Olabi, B., Robinson, V., Garden, O.J. & Parks, R.W. Incidence of individual organ dysfunction in fatal acute pancreatitis: analysis of 1024 death records. HPB (Oxford) 11, 166–170 (2009).

    Google Scholar 

  8. Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakagami, Y., Saito, H. & Katsuki, H. 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn. J. Pharmacol. 71, 183–186 (1996).

    CAS  PubMed  Google Scholar 

  10. Zhang, H. et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest. 123, 1019–1031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Courtney, S. & Scheel, A. Modulation of the kynurenine pathway for the potential treatment of neurodegenerative diseases. Curr. Top. Med. Chem. 6, 149–176 (2010).

    Google Scholar 

  12. Lowe, D.M. et al. Lead discovery for human kynurenine 3-monooxygenase by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 19, 508–515 (2014).

    PubMed  Google Scholar 

  13. Amaral, M. et al. Structural basis of kynurenine 3-monooxygenase inhibition. Nature 496, 382–385 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McArthur, J.N. & Dawkins, P.D. The effect of sodium salicylate on the binding of L-tryptophan to serum proteins. J. Pharm. Pharmacol. 21, 744–750 (1969).

    CAS  PubMed  Google Scholar 

  15. Sato, H. et al. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur. Respir. J. 23, 142–145 (2004).

    CAS  PubMed  Google Scholar 

  16. Nathani, N. et al. Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome. Crit. Care 12, R12 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Kipari, T. et al. Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am. J. Pathol. 169, 388–399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lögters, T.T. et al. Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 32, 29–34 (2009).

    PubMed  Google Scholar 

  19. Pellegrin, K. et al. Enhanced enzymatic degradation of tryptophan by indoleamine 2,3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma. Shock 23, 209–215 (2005).

    CAS  PubMed  Google Scholar 

  20. Forrest, C.M. et al. Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery. J. Neurochem. 119, 136–152 (2011).

    CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat. Med. 16, 279–285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pawlak, K., Domaniewski, T., Mysliwiec, M. & Pawlak, D. The kynurenines are associated with oxidative stress, inflammation and the prevalence of cardiovascular disease in patients with end-stage renal disease. Atherosclerosis 204, 309–314 (2009).

    CAS  PubMed  Google Scholar 

  23. Wang, Q. et al. Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ. Res. 114, 480–492 (2014).

    CAS  PubMed  Google Scholar 

  24. Eastman, C.L. & Guilarte, T.R. The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem. Res. 15, 1101–1107 (1990).

    CAS  PubMed  Google Scholar 

  25. Okuda, S., Nishiyama, N., Saito, H. & Katsuki, H. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc. Natl. Acad. Sci. USA 93, 12553–12558 (1996).

    CAS  PubMed  Google Scholar 

  26. Okuda, S., Nishiyama, N., Saito, H. & Katsuki, H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 70, 299–307 (1998).

    CAS  PubMed  Google Scholar 

  27. Giles, G.I., Collins, C.A., Stone, T.W. & Jacob, C. Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem. Biophys. Res. Commun. 300, 719–724 (2003).

    CAS  PubMed  Google Scholar 

  28. Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006).

    CAS  PubMed  Google Scholar 

  29. Moroni, F., Cozzi, A., Sili, M. & Mannaioni, G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J. Neural Transm. 119, 133–139 (2012).

    CAS  PubMed  Google Scholar 

  30. Murakami, Y. & Saito, K. Species and cell types difference in tryptophan metabolism. Int. J. Tryptophan Res. 6 (suppl. 1), 47–54 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. von Bubnoff, D. et al. FcepsilonRI induces the tryptophan degradation pathway involved in regulating T cell responses. J. Immunol. 169, 1810–1816 (2002).

    CAS  PubMed  Google Scholar 

  33. Chiarugi, A., Calvani, M., Meli, E., Traggiai, E. & Moroni, F. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol. 120, 190–198 (2001).

    CAS  PubMed  Google Scholar 

  34. Jones, S.P. et al. Expression of the kynurenine pathway in human peripheral blood mononuclear cells: implications for inflammatory and neurodegenerative disease. PLoS ONE 10, e0131389 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Zunszain, P.A. et al. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37, 939–949 (2012).

    CAS  PubMed  Google Scholar 

  36. Nguyen, N.T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. USA 107, 19961–19966 (2010).

    CAS  PubMed  Google Scholar 

  37. Mezrich, J.D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Opitz, C.A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  39. Genestet, C. et al. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic. Biol. Med. 73, 400–410 (2014).

    CAS  PubMed  Google Scholar 

  40. Giorgini, F. et al. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain. J. Biol. Chem. 288, 36554–36566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laukkarinen, J.M., Van Acker, G.J., Weiss, E.R., Steer, M.L. & Perides, G. A mouse model of acute biliary pancreatitis induced by retrograde pancreatic duct infusion of Na-taurocholate. Gut 56, 1590–1598 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mole, D.J., McFerran, N.V. & Diamond, T. Differential preservation of lipopolysaccharide-induced chemokine/cytokine expression during experimental pancreatitis-associated organ failure in rats shows a regulatory expressed phenotype. Pancreatology 8, 478–487 (2008).

    CAS  PubMed  Google Scholar 

  43. Schmidt, J. et al. A better model of acute pancreatitis for evaluating therapy. Ann. Surg. 215, 44–56 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mole, D.J., Taylor, M.A., McFerran, N.V. & Diamond, T. The isolated perfused liver response to a 'second hit' of portal endotoxin during severe acute pancreatitis. Pancreatology 5, 475–485 (2005).

    CAS  PubMed  Google Scholar 

  45. Van Laethem, J.L. et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 108, 1917–1922 (1995).

    CAS  PubMed  Google Scholar 

  46. Dragun, D. et al. FTY720-induced lymphocyte homing modulates post-transplant preservation/reperfusion injury. Kidney Int. 65, 1076–1083 (2004).

    CAS  PubMed  Google Scholar 

  47. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS  PubMed  Google Scholar 

  48. Wong, J., Ray, W.J. & Kornilova, A.Y. Development of a microplate fluorescence assay for kynurenine aminotransferase. Anal. Biochem. 409, 183–188 (2011).

    CAS  PubMed  Google Scholar 

  49. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.J.M. is supported by a Clinician Scientist Fellowship from the Health Foundation/Academy of Medical Sciences, the Medical Research Council Developmental Pathway Funding Stream and Wellcome Trust Institutional Strategic Support Fund. J.P.I. acknowledges the support of the Medical Research Council. We thank D. Harbison, Edinburgh Bioquarter, the staff of the Central Bioresearch Services, University of Edinburgh; F. Howie, D. Mauchline, M. McMillan, L. Boswell and M. Millar; and colleagues in the Medical Research Council Centre for Inflammation Research for support and advice.

Author information

Authors and Affiliations

Authors

Contributions

D.J.M., S.P.W., I.U. and J.L. led the University of Edinburgh/GlaxoSmithKline Discovery Partnership with Academia collaboration. D.J.M., S.P.W., I.U., O.J.G., J.P.H., S.E.M.H., D.S.H., J.L. and J.P.I. developed and refined the hypothesis and experimental design. D.J.M., X.Z., I.U., B.B., N.A., L.T. and V.B. did or designed the in vivo experiments. X.Z., M.G.F.S. and D.J.M. made the genetically altered mice from iKOMP embryonic stem cells. J.E.B. reported the pathology. S.P.W., I.U., J.L., M.B. and K.W. did or designed the cell-based experiments. N.Z.M.H., S.P.W. and M.B. did or developed the LC-MS/MS. J.P.H., C.H., J.L., S.P.W., D.J.M., A.M., I.U. and D.S.H. did or designed the assay development and screening. O.M., A.W., J.L., J.H. and D.S.H. did or designed the medicinal chemistry. P.R., C.G.M. and M.W. did the structural biology. All authors contributed to data analysis and/or interpretation. All authors contributed to, revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Damian J Mole.

Ethics declarations

Competing interests

The University of Edinburgh is engaged in a Discovery Partnership with Academia collaboration with GlaxoSmithKline. The University of Edinburgh receives milestone and royalty payments according to the phase of the project, as governed by the University of Edinburgh revenue sharing policy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–5 and Supplementary Note (PDF 17975 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mole, D., Webster, S., Uings, I. et al. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med 22, 202–209 (2016). https://doi.org/10.1038/nm.4020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4020

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research