Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice

Abstract

Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1–deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Impaired recovery from IRI-induced AKI in the absence of AIM.
Figure 2: Impaired clearance of intraluminal debris and defective tissue repair in AIM mice.
Figure 3: KIM-1 as a ligand of AIM.
Figure 4: AIM-accumulation enhances debris engulfment mediated by KIM-1.
Figure 5: Free AIM in serum and its excretion into urine after AKI.
Figure 6: rAIM facilitates recovery from AKI.

References

  1. 1

    Molitoris, B.A. Therapeutic translation in acute kidney injury: the epithelial-endothelial axis. J. Clin. Invest. 124, 2355–2363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Bedford, M., Farmer, C., Levin, A., Ali, T. & Stevens, P. Acute kidney injury and CKD: chicken or egg? Am. J. Kidney Dis. 59, 485–491 (2012).

    Article  PubMed  Google Scholar 

  4. 4

    Amdur, R.L., Chawla, L.S., Amodeo, S., Kimmel, P.L. & Palant, C.E. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 76, 1089–1097 (2009).

    Article  PubMed  Google Scholar 

  5. 5

    Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kaushal, G.P. & Shah, S.V. Challenges and advances in the treatment of AKI. J. Am. Soc. Nephrol. 25, 877–883 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bonventre, J.V. et al. Kidney Research National Dialogue (KRND). AKI: a path forward. Clin. J. Am. Soc. Nephrol. 8, 1606–1608 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Jo, S.K., Rosner, M.H. & Okusa, M.D. Pharmacologic treatment of acute kidney injury: why drugs haven't worked, and what is on the horizon. Clin. J. Am. Soc. Nephrol. 2, 356–365 (2007).

    Article  PubMed  Google Scholar 

  9. 9

    Bonventre, J.V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Humphreys, B.D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B.D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Wan, E. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113, 1004–1012 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Juncadella, I.J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Henson, P.M., Vandivier, R.W. & Douglas, I.S. Cell death, remodeling and repair in chronic obstructive pulmonary disease? Proc. Am. Thorac. Soc. 3, 713–717 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sandahl, M., Hunter, D.M., Strunk, K.E., Earp, H.S. & Cook, R.S. Epithelial cell–directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation. BMC Dev. Biol. 10, 122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Mochizuki, A. et al. Hepatic stellate cells orchestrate clearance of necrotic cells in a hypoxia-inducible factor–1α–dependent manner by modulating macrophage phenotype in mice. J. Immunol. 192, 3847–3857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Ichimura, T. et al. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Charlton, J.R., Portilla, D. & Okusa, M.D. A basic science view of acute kidney injury biomarkers. Nephrol. Dial. Transplant. 29, 1301–1311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Amin, R.P. et al. Identification of putative gene-based markers of renal toxicity. Environ. Health Perspect. 112, 465–479 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Ichimura, T. et al. Kidney injury molecule–1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is upregulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Bonventre, J.V. Kidney injury molecule–1: a translational journey. Trans. Am. Clin. Climatol. Assoc. 125, 293–299, discussion 299 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Xiao, S. et al. Defect in regulatory B cell function and development of systemic autoimmunity in T cell Ig mucin 1 (Tim-1) mucin domain–mutant mice. Proc. Natl. Acad. Sci. USA 109, 12105–12110 (2012).

    Article  PubMed  Google Scholar 

  23. 23

    Yang, L. et al. KIM-1–mediated phagocytosis reduces acute injury to the kidney. J. Clin. Invest. 125, 1620–1636 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Ismail, O.Z. et al. Kidney injury molecule–1 protects against G-α12 activation and tissue damage in renal ischemia-reperfusion injury. Am. J. Pathol. 185, 1207–1215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Miyazaki, T., Hirokami, Y., Matsuhashi, N., Takatsuka, H. & Naito, M. Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. J. Exp. Med. 189, 413–422 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Yamazaki, T. et al. Circulating AIM as an indicator of liver damage and hepatocellular carcinoma in humans. PLoS One 9, e109123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Arai, S. et al. A role for the apoptosis inhibitory factor AIM (Spalpha or Api6) in atherosclerosis development. Cell Metab. 1, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Joseph, S.B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Valledor, A.F. et al. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl. Acad. Sci. USA 101, 17813–17818 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Arai, S. et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Reports 3, 1187–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Sarrias, M.R. et al. A role for human Spalpha as a pattern-recognition receptor. J. Biol. Chem. 280, 35391–35398 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Kurokawa, J. et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab. 11, 479–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Tissot, J.D. et al. IgM are associated to Spalpha (CD5 antigen-like). Electrophoresis 23, 1203–1206 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Maehara, N. et al. Circulating AIM prevents hepatocellular carcinoma through complement activation. Cell Reports 9, 61–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Iwamura, Y. et al. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet–coating proteins leading to lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 422, 476–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Arai, S. & Miyazaki, T. Impacts of the apoptosis inhibitor of macrophage (AIM) on obesity-associated inflammatory diseases. Semin. Immunopathol. 36, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Kurokawa, J. et al. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proc. Natl. Acad. Sci. USA 108, 12072–12077 (2011).

    Article  PubMed  Google Scholar 

  38. 38

    Hamada, M. et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat. Commun. 5, 3147 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Mera, K. et al. Serum levels of apoptosis inhibitor of macrophage are associated with hepatic fibrosis in patients with chronic hepatitis C. BMC Gastroenterol. 14, 27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Liaño, F. & Pascual, J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Kidney Int. 50, 811–818 (1996).

    Article  PubMed  Google Scholar 

  41. 41

    Mehta, R.L. et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 66, 1613–1621 (2004).

    Article  PubMed  Google Scholar 

  42. 42

    Thadhani, R., Pascual, M. & Bonventre, J.V. Acute renal failure. N. Engl. J. Med. 334, 1448–1460 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Duffield, J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Linkermann, A., De Zen, F., Weinberg, J., Kunzendorf, U. & Krautwald, S. Programmed necrosis in acute kidney injury. Nephrol. Dial. Transplant. 27, 3412–3419 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Price, P.M. & Hodeify, R. A possible mechanism of renal cell death after ischemia-reperfusion. Kidney Int. 81, 720–721 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Linkermann, A. et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia-reperfusion injury. Kidney Int. 81, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Brooks, C., Wei, Q., Cho, S.G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Kim, J., Long, K.E., Tang, K. & Padanilam, B.J. Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int. 82, 193–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Kuchroo, V.K., Umetsu, D.T., DeKruyff, R.H. & Freeman, G.J. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol. 3, 454–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Angiari, S. & Constantin, G. Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol. Med. 20, 675–684 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Lim, A.I., Tang, S.C., Lai, K.N. & Leung, J.C. Kidney injury molecule–1: more than just an injury marker of tubular epithelial cells? J. Cell. Physiol. 228, 917–924 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Kai, T., Yamazaki, T., Arai, S. & Miyazaki, T. Stabilization and augmentation of circulating AIM in mice by synthesized IgM-Fc. PLoS One 9, e97037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Ravichandran, K.S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35, 445–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Yu, W. et al. H2O2 activates G protein–α12 to disrupt the junctional complex and enhance ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 109, 6680–6685 (2012).

    Article  PubMed  Google Scholar 

  55. 55

    Nozaki, Y. et al. Endogenous Tim-1 (Kim-1) promotes T cell responses and cell-mediated injury in experimental crescentic glomerulonephritis. Kidney Int. 81, 844–855 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Bonventre, J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14, S55–S61 (2003).

    Article  PubMed  Google Scholar 

  57. 57

    Ferenbach, D.A. & Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney aging and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Chawla, L.S., Eggers, P.W., Star, R.A. & Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Coca, S.G., Singanamala, S. & Parikh, C.R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  60. 60

    Humphreys, B.D. et al. Chronic epithelial kidney injury molecule–1 expression causes murine kidney fibrosis. J. Clin. Invest. 123, 4023–4035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Moore, K.J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem. 277, 47373–47379 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses, in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  63. 63

    Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, Washington, D.C., USA, 2011).

  64. 64

    Wong, S.H., Barlow, J.L., Nabarro, S., Fallon, P.G. & McKenzie, A.N. Tim-1 is induced on germinal center B cells through B cell–receptor signaling but is not essential for the germinal center response. Immunology 131, 77–88 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Park, K.M. et al. Inducible nitric oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J. Biol. Chem. 278, 27256–27266 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Eckardt, K.U. & Kasiske, B.L. Kidney disease: improving global outcomes. Nat. Rev. Nephrol. 5, 650–657 (2009).

    Article  PubMed  Google Scholar 

  67. 67

    Basile, D.P., Anderson, M.D. & Sutton, T.A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303–1353 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Kitamura, S. et al. Transforming growth factor–β1 induces vascular endothelial growth factor expression in murine proximal tubular epithelial cells. Nephron Exp. Nephrol. 95, e79–e86 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nagase, M. Nangaku, T. Fujita, M. Ono, T. Gohda, Y. Sonoda, T. Aruga, K. Kimura, T. Yasuda, Y. Ito and S. Matsuo for helpful advice and discussion; T. Sugaya for mProx24 cells; D. Ikeda and S. Yamashita for Cd36−/− mice; K. Yamamura and N. Takeda for help with animal experiments; A. Nishijima, K. Aoyama and M. Shinohara for general technical assistance; and S. Tomita and Y. Inoue for administrative cooperation. This work was supported by a Core Research for Evolutional Medical Science and Technology grant funded by the Agency for Medical Research and Development (AMED-CREST) (T.M.), a research grant by Onsendo Co., Ltd. (T.M.) and an operating grant from the Canadian Institutes of Health Research (HDK244945) (L.G.).

Author information

Affiliations

Authors

Contributions

S.A. and K.K. performed the majority of experiments—S.A. performed flow cytometry and the in vitro experiments, including the phagocytosis assays, and K.K. did animal experiments and histology. Y.T. and T.Y. contributed to analysis of AKI models; X.Z. and L.G. handled AKI induction in KIM-1–deficient mice; R.T. did histology; R.S., A.M. and Y.Y. contributed to biochemical experiments; T.M. constructed most plasmids; M.M. did kidney cell dissociation; N.M. did immunoblotting of human and mouse sera; S.K. contributed to animal experiments; K.D., A.T., E.N., Y.S. and N.Y. prepared and analyzed human samples; A.N., S.A., T.T. and T.M. designed experiments; and T.M. supervised the whole study and wrote the paper.

Corresponding author

Correspondence to Toru Miyazaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4 (PDF 2329 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arai, S., Kitada, K., Yamazaki, T. et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med 22, 183–193 (2016). https://doi.org/10.1038/nm.4012

Download citation

Further reading