Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parkinson's disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes

Abstract

Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson's disease (PD), and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, which encodes a key component of the membrane protein–recycling retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations lead to neurodegeneration remains unclear. Here we demonstrate that PD-associated VPS35 mutations caused mitochondrial fragmentation and cell death in cultured neurons in vitro, in mouse substantia nigra neurons in vivo and in human fibroblasts from an individual with PD who has the VPS35D620N mutation. VPS35-induced mitochondrial deficits and neuronal dysfunction could be prevented by inhibition of mitochondrial fission. VPS35 mutants showed increased interaction with dynamin-like protein (DLP) 1, which enhanced turnover of the mitochondrial DLP1 complexes via the mitochondria-derived vesicle–dependent trafficking of the complexes to lysosomes for degradation. Notably, oxidative stress increased the VPS35-DLP1 interaction, which we also found to be increased in the brains of sporadic PD cases. These results revealed a novel cellular mechanism for the involvement of VPS35 in mitochondrial fission, dysregulation of which is probably involved in the pathogenesis of familial, and possibly sporadic, PD.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: VPS35 regulates mitochondrial dynamics in vitro.
Figure 2: VPS35 regulates mitochondrial dynamics in vivo.
Figure 3: Inhibition of mitochondrial fission alleviates VPS35-induced mitochondrial dysfunction and neuronal deficits.
Figure 4: VPS35 promotes clearance of the mitochondrial DLP1 complex.
Figure 5: The VPS35-DLP1 interaction is key to the turnover of mitochondrial DLP1 complexes.
Figure 6: The VPS35-containing retromer mediates mitochondrial DLP1 complex degradation through an MDV-to-lysosome pathway.

References

  1. Chan, D.C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265–287 (2012).

    CAS  PubMed  Google Scholar 

  2. Yan, M.H., Wang, X. & Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62, 90–101 (2013).

    CAS  PubMed  Google Scholar 

  3. Burté, F., Carelli, V., Chinnery, P.F. & Yu-Wai-Man,, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24 (2015).

    PubMed  Google Scholar 

  4. Wang, X. et al. Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA 105, 19318–19323 (2008).

    CAS  PubMed  Google Scholar 

  5. Chen, Y. & Dorn, G.W. PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark, I.E. et al. Drosophila Pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    CAS  PubMed  Google Scholar 

  7. Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X. et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21, 1931–1944 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Su, Y.C. & Qi, X. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by the LRRK2G2019S mutation. Hum. Mol. Genet. 22, 4545–4561 (2013).

    CAS  PubMed  Google Scholar 

  10. Irrcher, I. et al. Loss of the Parkinson's disease–linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746 (2010).

    CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Parkinson's disease–associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J. Neurochem. 121, 830–839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim, K.L., Ng, X.H., Grace, L.G. & Yao, T.P. Mitochondrial dynamics and Parkinson's disease: focus on parkin. Antioxid. Redox Signal. 16, 935–949 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vives-Bauza, C. et al. Control of mitochondrial integrity in Parkinson's disease. Prog. Brain Res. 183, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  14. Sharma, M. et al. A multicenter clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J. Med. Genet. 49, 721–726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar, K.R. et al. Frequency of the D620N mutation in VPS35 in Parkinson disease. Arch. Neurol. 69, 1360–1364 (2012).

    PubMed  Google Scholar 

  18. Lesage, S. et al. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78, 1449–1450 (2012).

    CAS  PubMed  Google Scholar 

  19. Bonifacino, J.S. & Hurley, J.H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burd, C. & Cullen, P.J. Retromer: a master conductor of endosome sorting. Cold Spring Harb. Perspect. Biol. 6, a016774 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).

    CAS  PubMed  Google Scholar 

  22. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    CAS  PubMed  Google Scholar 

  23. Sugiura, A., McLelland, G.L., Fon, E.A. & McBride, H.M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon, Y., Pitts, K.R., Dahan, S. & McNiven, M.A. A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J. Cell Biol. 140, 779–793 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Seaman, M.N. The retromer complex—endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–4702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roy Chowdhury, S.K. et al. Impaired adenosine monophosphate–activated protein kinase signaling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135, 1751–1766 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Brand, M.D. & Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Merrill, R.A. et al. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol. 9, e1000612 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, P.P. et al. Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J. Biol. Chem. 279, 35967–35974 (2004).

    CAS  PubMed  Google Scholar 

  31. Zhao, J. et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30, 2762–2778 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, T. et al. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. Exp. Cell Res. 319, 2893–2904 (2013).

    CAS  PubMed  Google Scholar 

  33. Lucin, K.M. et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis, and is impaired in Alzheimer's disease. Neuron 79, 873–886 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M. & Fon, E.A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Soubannier, V., Rippstein, P., Kaufman, B.A., Shoubridge, E.A. & McBride, H.M. Reconstitution of mitochondria-derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE 7, e52830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008).

    CAS  PubMed  Google Scholar 

  37. Chan, D.C. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22, 79–99 (2006).

    CAS  PubMed  Google Scholar 

  38. Lackner, L.L. & Nunnari, J.M. The molecular mechanism and cellular functions of mitochondrial division. Biochim. Biophys. Acta 1792, 1138–1144 (2009).

    CAS  PubMed  Google Scholar 

  39. Zunino, R., Braschi, E., Xu, L. & McBride, H.M. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 284, 17783–17795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsika, E. et al. Parkinson's disease–linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum. Mol. Genet. 23, 4621–4638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McGough, I.J. et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease–linked VPS35D620N mutation. Curr. Biol. 24, 1670–1676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Follett, J. et al. The Vps35D620N mutation linked to Parkinson's disease disrupts the cargo sorting function of retromer. Traffic 15, 230–244 (2014).

    CAS  PubMed  Google Scholar 

  43. Zavodszky, E. et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat. Commun. 5, 3828 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. et al. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J. Neurosci. 29, 9090–9103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, X., Su, B., Fujioka, H. & Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am. J. Pathol. 173, 470–482 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujioka, H., Tandler, B., Consolo, M.C. & Karnik, P. Division of mitochondria in cultured human fibroblasts. Microsc. Res. Tech. 76, 1213–1216 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Fujioka, H. et al. Decreased cytochrome c oxidase subunit VIIa in aged rat heart mitochondria: immunocytochemistry. Anat. Rec. (Hoboken) 294, 1825–1833 (2011).

    CAS  Google Scholar 

  48. Hanaichi, T. et al. A stable lead by modification of Sato's method. J. Electron Microsc. (Tokyo) 35, 304–306 (1986).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the US National Institutes of Health (NIH) (grant no. NS071184 (X.Z.), NS083498 (X.Z.) and NS085747 (X.W.)); the Clinical and Translational Science Collaborative of Cleveland; the National Center for Advancing Translational Sciences component of the NIH and the NIH Roadmap for Medical Research (grant no. UL1TR000439; pilot award to X.Z.); the Chinese Overseas, Hong Kong and Macao Scholars Collaborated Research Fund (grant no. 81228007; X.Z.); the Shanghai Orientalist program (X.Z.), the Dr. Robert M. Kohrman Memorial Fund (X.Z.); the National Natural Science Fund of China (grant no. 81071024, 81171202, 30870879, 81228007 and 81471287; all to J.L.); the Wellcome Trust (grant no. 089928 and 085743; both to P.J.C.) and the Medical Research Council (grant no. MR/K018299/1; P.J.C.). We thank I. Kelmanson (Evrogen) for the mito-TagBFP construct and Y. Yoon (University of Rochester) for the DLP1WT and DLP1K38A constructs. Some Parkinson's disease tissue samples were obtained from the Harvard Brain Tissue Resource Center, which is supported in part by the Public Health Service contract (HHS-NIH-NIDA (MH)-13-265), and from the NIH Neurobiobank at the University of Maryland.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and X.W. conceived and directed the project, interpreted the results and wrote the manuscript. W.W. and X.W. designed and carried out experiments, analyzed results and generated figures. H.F. helped with electron microscopy (EM) and the immuno-EM study; C.H. helped with bioenergetics measurements; A.L.W., M.A.C. and P.J.C. contributed fibroblasts from the individual with PD who has the VPS35D620N mutation and provided feedback on the manuscript; and J.L. contributed to the conception of the project, design of the experiments and the interpretation of results, and provided feedback on the manuscript.

Corresponding authors

Correspondence to Xinglong Wang, Jun Liu or Xiongwei Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 (PDF 5040 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, X., Fujioka, H. et al. Parkinson's disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22, 54–63 (2016). https://doi.org/10.1038/nm.3983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3983

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing