Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development

Abstract

Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)–protein kinase B (AKT)–mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3E17K mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non–cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Modeling FMCD mutation in developing brain.
Figure 2: Cellular pathology from AKT3 activation in human neural progenitor cells.
Figure 3: AKT3 kinase activity is essential for aberrant migration phenotype.
Figure 4: Pharmacological rescue of AKT3E17K-induced phenotypes.
Figure 5: Genetic recombination of AKT3E17K defines reversibility of FMCD networks.
Figure 6: Neuronal migration defects rescued by Reln siRNA.

Accession codes

Primary accessions

BioProject

References

  1. Lee, J.H. et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Poduri, A., Evrony, G.D., Cai, X. & Walsh, C.A. Somatic mutation, genomic variation and neurological disease. Science 341, 1237758 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Aronica, E., Becker, A.J. & Spreafico, R. Malformations of cortical development. Brain Pathol. 22, 380–401 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  4. Blümcke, I. et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia 52, 158–174 (2011).

    PubMed  Article  Google Scholar 

  5. Taylor, D.C., Falconer, M.A., Bruton, C.J. & Corsellis, J.A. Focal dysplasia of the cerebral cortex in epilepsy. J. Neurol. Neurosurg. Psychiatry 34, 369–387 (1971).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. McConnell, M.J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Rivière, J.B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Nakashima, M. et al. Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann. Neurol. 78, 375–386 (2015).

    CAS  PubMed  Article  Google Scholar 

  10. Lim, J.S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    CAS  PubMed  Article  Google Scholar 

  11. Evrony, G.D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy number variation in the human brain. Cell Rep. 8, 1280–1289 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Conti, V. et al. Focal dysplasia of the cerebral cortex and infantile spasms associated with somatic 1q21.1-q44 duplication including the AKT3 gene. Clin. Genet. 88, 241–247 (2015).

    CAS  PubMed  Article  Google Scholar 

  14. Blümcke, I. et al. Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord. 11, 181–193 (2009).

    PubMed  Article  Google Scholar 

  15. Hadjivassiliou, G. et al. The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy. Acta Neuropathol. 120, 517–528 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  16. Cepeda, C. et al. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav. 9, 219–235 (2006).

    PubMed  Article  Google Scholar 

  17. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Tegenge, M.A., Rockel, T.D., Fritsche, E. & Bicker, G. Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cell. Mol. Life Sci. 68, 2089–2099 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. Adams, J.R. et al. Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res. 71, 2706–2717 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. D'Arcangelo, G. et al. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17, 23–31 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Jossin, Y. & Cooper, J.A. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat. Neurosci. 14, 697–703 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Hashimoto-Torii, K. et al. Interaction between reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60, 273–284 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Sekine, K. et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin-α5β1. Neuron 76, 353–369 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Franco, S.J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S.R. & Muller, U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482–497 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Hong, S.E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

    CAS  PubMed  Article  Google Scholar 

  26. Kubo, K. et al. Ectopic reelin induces neuronal aggregation with a normal birthdate-dependent 'inside-out' alignment in the developing neocortex. J. Neurosci. 30, 10953–10966 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Sekine, K., Kubo, K.I. & Nakajima, K. How does reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci. Res. 86, 50–58 (2014).

    CAS  PubMed  Article  Google Scholar 

  28. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    CAS  PubMed  Article  Google Scholar 

  30. Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    CAS  PubMed  Article  Google Scholar 

  31. Regad, T., Roth, M., Bredenkamp, N., Illing, N. & Papalopulu, N. The neural progenitor–specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat. Cell Biol. 9, 531–540 (2007).

    CAS  PubMed  Article  Google Scholar 

  32. Fauser, S. et al. Long-term seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia 56, 66–76 (2015).

    PubMed  Article  Google Scholar 

  33. Gutmann, D.H. Tumor suppressor genes as negative growth regulators in development and differentiation. Int. J. Dev. Biol. 39, 895–908 (1995).

    CAS  PubMed  Google Scholar 

  34. Kwon, C.H. et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat. Genet. 29, 404–411 (2001).

    CAS  PubMed  Article  Google Scholar 

  35. Backman, S.A. et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat. Genet. 29, 396–403 (2001).

    CAS  PubMed  Article  Google Scholar 

  36. Feliciano, D.M., Su, T., Lopez, J., Platel, J.C. & Bordey, A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J. Clin. Invest. 121, 1596–1607 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Bateup, H.S. et al. Excitatory-inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78, 510–522 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J. & Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734 (2005).

    CAS  PubMed  Article  Google Scholar 

  39. Fraser, M.M. et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 64, 7773–7779 (2004).

    CAS  PubMed  Article  Google Scholar 

  40. Zhou, J. & Parada, L.F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22, 873–879 (2012).

    CAS  PubMed  Article  Google Scholar 

  41. Kwon, C.H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Tsai, P.T. et al. Autistic-like behavior and cerebellar dysfunction in Purkinje cell Tsc1-mutant mice. Nature 488, 647–651 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Ariani, F. et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 83, 89–93 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Persico, A.M. et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6, 150–159 (2001).

    CAS  PubMed  Article  Google Scholar 

  45. Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382 (2002).

    CAS  PubMed  Article  Google Scholar 

  46. Truccolo, W. et al. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635–641 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Matsuki, T. et al. Reelin and Stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 143, 826–836 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Kupferman, J.V. et al. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 158, 1335–1347 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Pujadas, L. et al. Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J. Neurosci. 30, 4636–4649 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Brennan, C.W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Chow, L.M. et al. Cooperativity within and among Pten, p53 and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19, 305–316 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kurek, K.C. et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90, 1108–1115 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Lindhurst, M.J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Keppler-Noreuil, K.M. et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am. J. Med. Genet. A. 164, 1713–1733 (2014).

    CAS  PubMed Central  Article  Google Scholar 

  56. LoTurco, J.J. & Bai, J. The multipolar stage and disruptions in neuronal migration. Trends Neurosci. 29, 407–413 (2006).

    CAS  PubMed  Article  Google Scholar 

  57. National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  58. Baek, S.T. et al. Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 82, 1255–1262 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Sarnat, H.B. Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin. Neuropathol. 32, 340–369 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  60. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Cai, M. Huynh, T. Chirwa, K. Um, J. Silhavy and U. Yang for technical expertise. This work was supported by the US National Institutes of Health (grant no. R01NS083823; J.G.G. and G.W.M.), the Simons Foundation for Autism Research (grant no. 275275; J.G.G.), the Howard Hughes Medical Institute (J.G.G.), the 2014 National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator Grant from the Brain & Behavior Research Foundation (grant no. 22892; S.T.B.), a Human Frontier Science Program Long-Term Fellowship (S.-K.K.), an A.P. Giannini Foundation Fellowship (A.E.S.) and an NIH NICHD K99/R00 Pathway to Independence Award (grant no. K99HD082337; A.E.S.). G.W.M. was supported by the Dr. Alfonsina Q. Davies Endowed Chair in honor of Paul Crandall MD for Epilepsy Research. We thank the UCSD Neuroscience Microscopy Core P30 NS047101 for imaging support, K. Jepsen from the UCSD Institute for Genomic Medicine Core Facility, the UCSD Human Embryonic Stem Cell Core Facility, A. Roberts from the Scripps Research Institute Animal Core Facility, I. Verma (Salk Institute) for the pBOB-Switch vector, A. Acharya (University of Texas Southwestern Medical Center) for the Cre-expressing adenovirus, G. Fishell (New York University) for the Foxg1 plasmid, and P. Mischel, I. Martin-Valencia, T. Curran and T. Park for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.T.B. and J.G.G. designed experiments, analyzed data and wrote the manuscript. B.C. performed bioinformatics analysis of RNA-seq results. S.T.B. performed experiments. E.-J.Y. performed FOXG1 chromatin immunoprecipitation. S.-K.K. helped with in utero electroporation. A.G.-G., A.E.S., S.K., H.-C.K., S.S. and G.W.M. contributed key reagents and advice. J.G.G. conceived and supervised the project.

Corresponding author

Correspondence to Joseph G Gleeson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 5601 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baek, S., Copeland, B., Yun, EJ. et al. An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat Med 21, 1445–1454 (2015). https://doi.org/10.1038/nm.3982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3982

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing