Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cardiac RKIP induces a beneficial β-adrenoceptor–dependent positive inotropy

Subjects

An Erratum to this article was published on 04 February 2016

This article has been updated

Abstract

In heart failure therapy, it is generally assumed that attempts to produce a long-term increase in cardiac contractile force are almost always accompanied by structural and functional damage. Here we show that modest overexpression of the Raf kinase inhibitor protein (RKIP), encoded by Pebp1 in mice, produces a well-tolerated, persistent increase in cardiac contractility that is mediated by the β1-adrenoceptor (β1AR). This result is unexpected, as β1AR activation, a major driver of cardiac contractility, usually has long-term adverse effects. RKIP overexpression achieves this tolerance via simultaneous activation of the β2AR subtype. Analogously, RKIP deficiency exaggerates pressure overload–induced cardiac failure. We find that RKIP expression is upregulated in mouse and human heart failure, indicative of an adaptive role for RKIP. Pebp1 gene transfer in a mouse model of heart failure has beneficial effects, suggesting a new therapeutic strategy for heart failure therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RKIP induces a well-tolerated type of chronically increased cardiac contractility.
Figure 2: RKIP protects mice from pressure overload–induced heart failure.
Figure 3: AAV9-RKIPWT–treated mice are protected from TAC-induced heart failure.
Figure 4: RKIP enhances β-adrenoceptor signaling.
Figure 5: β2AR protects RKIPWT mice from diastolic SR Ca2+ leakage.
Figure 6: RKIP induces positive inotropy but also protects from apoptosis and ectopic heartbeats.

Similar content being viewed by others

Change history

  • 29 October 2015

    In the version of this article initially published, there are typographical errors in the labels to Fig. 3e–h: 'WT + AAV9-eGFP' and 'WT + AAV9-RKIPWT' are incorrect, and should be 'RKIP- + AAV9-eGFP' and 'RKIP- + AAV9-RKIPWT', respectively. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. McMurray, J.J.V. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  2. Tacon, C.L., McCaffrey, J. & Delaney, A. Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med. 38, 359–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M.J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl. Acad. Sci. USA 96, 7059–7064 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Communal, C., Singh, K., Sawyer, D.B. & Colucci, W.S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin–sensitive G protein. Circulation 100, 2210–2212 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Liggett, S.B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Rockman, H.A., Koch, W.J. & Lefkowitz, R.J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Xiao, R.-P. β-adrenergic signaling in the heart: dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Sci. STKE 2001, re15 (2001).

    CAS  PubMed  Google Scholar 

  8. Ahmet, I. et al. Cardioprotective and survival benefits of long-term combined therapy with β2-adrenoreceptor (AR) agonist and β1-AR blocker in dilated cardiomyopathy postmyocardial infarction. J. Pharmacol. Exp. Ther. 325, 491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Raake, P.W. et al. G protein–coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ. Res. 103, 413–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raake, P.W. et al. Cardiac G protein–coupled receptor kinase 2 ablation induces a novel Ca2+-handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Circulation 125, 2108–2118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Völkers, M. et al. The inotropic peptide β−ARKct improves AR responsiveness in normal and failing cardiomyocytes through Gβγ-mediated L-type calcium current disinhibition. Circ. Res. 108, 27–39 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. Fu, X., Koller, S., Abd Alla, J. & Quitterer, U. Inhibition of G protein–coupled receptor kinase 2 (GRK2) triggers the growth-promoting mitogen-activated protein kinase (MAPK) pathway. J. Biol. Chem. 288, 7738–7755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kairouz, V., Lipskaia, L., Hajjar, R.J. & Chemaly, E.R. Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann. NY Acad. Sci. 1254, 42–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Matkovich, S.J. et al. Cardiac-specific ablation of G protein receptor kinase 2 redefines its roles in heart development and β-adrenergic signaling. Circ. Res. 99, 996–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Lorenz, K., Lohse, M.J. & Quitterer, U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426, 574–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yeung, K. et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Deiss, K., Kisker, C., Lohse, M.J. & Lorenz, K. Raf kinase inhibitor protein (RKIP) dimer formation controls its target switch from Raf1 to G protein–coupled receptor kinase (GRK) 2. J. Biol. Chem. 287, 23407–23417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corbit, K.C. et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem. 278, 13061–13068 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Palczewski, K., Buczyłko, J., Lebioda, L., Crabb, J.W. & Polans, A.S. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J. Biol. Chem. 268, 6004–6013 (1993).

    CAS  PubMed  Google Scholar 

  20. Lorenz, K., Schmitt, J.P., Schmitteckert, E.M. & Lohse, M.J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ruppert, C. et al. Interference with ERKThr188 phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 110, 7440–7445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braz, J.C. et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nat. Med. 10, 248–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hambleton, M. et al. Pharmacological- and gene therapy–based inhibition of protein kinase Cα/β enhances cardiac contractility and attenuates heart failure. Circulation 114, 574–582 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dorn, G.W. et al. Sustained in vivo cardiac protection by a rationally designed peptide that causes ɛ protein kinase C translocation. Proc. Natl. Acad. Sci. USA 96, 12798–12803 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lehnart, S.E., Maier, L.S. & Hasenfuss, G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 14, 213–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maillet, M., van Berlo, J.H. & Molkentin, J.D. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 14, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pleger, S.T. et al. Cardiac AAV9–S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci. Transl. Med. 3, 92ra64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rohrer, D.K., Schauble, E.H., Desai, K.H., Kobilka, B.K. & Bernstein, D. Alterations in dynamic heart rate control in the β1-adrenergic receptor knockout mouse. Am. J. Physiol. 274, H1184–H1193 (1998).

    CAS  PubMed  Google Scholar 

  29. Chruscinski, A.J. et al. Targeted disruption of the β2-adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ling, H. et al. Requirement for Ca2+/calmodulin–dependent kinase II in the transition from pressure overload–induced cardiac hypertrophy to heart failure in mice. J. Clin. Invest. 119, 1230–1240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiferaw, Y., Aistrup, G.L. & Wasserstrom, J.A. Intracellular Ca2+ waves, afterdepolarizations and triggered arrhythmias. Cardiovasc. Res. 95, 265–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, T., Zhang, T., Mestril, R. & Bers, D.M. Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ. Res. 99, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bers, D.M. Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ. Res. 110, 796–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Eschenhagen, T. Is ryanodine receptor phosphorylation key to the fight or flight response and heart failure? J. Clin. Invest. 120, 4197–4203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Respress, J.L. et al. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ. Res. 110, 1474–1483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dobrev, D. & Wehrens, X.H.T. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ. Res. 114, 1311–1319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shan, J. et al. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J. Clin. Invest. 120, 4388–4398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, M.E., Brown, J.H. & Bers, D.M. CaMKII in myocardial hypertrophy and heart failure. J. Mol. Cell. Cardiol. 51, 468–473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huke, S. & Bers, D.M. Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem. Biophys. Res. Commun. 376, 80–85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Orchard, C. & Brette, F. T-tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc. Res. 77, 237–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Nikolaev, V.O. et al. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kuschel, M. et al. Gi protein–mediated functional compartmentalization of cardiac β2-adrenergic signaling. J. Biol. Chem. 274, 22048–22052 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Xiao, R.P. et al. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ. Res. 84, 43–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Talan, M.I., Ahmet, I., Xiao, R.-P. & Lakatta, E.G. β2-AR agonists in treatment of chronic heart failure: long path to translation. J. Mol. Cell. Cardiol. 51, 529–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Chesley, A. et al. The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3′ kinase. Circ. Res. 87, 1172–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Slack, J.P. et al. The enhanced contractility of the phospholamban-deficient mouse heart persists with aging. J. Mol. Cell. Cardiol. 33, 1031–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kranias, E.G. & Hajjar, R.J. Modulation of Cardiac Contractility by the Phopholamban/SERCA2a Regulatome. Circ. Res. 110, 1646–1660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Greenberg, B. et al. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure. JACC: Heart Failure 2, 84–92 (2014).

    PubMed  Google Scholar 

  50. Antos, C.L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. El-Armouche, A. et al. Phosphatase inhibitor-1–deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy. Cardiovasc. Res. 80, 396–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Koval, O.M. et al. CaV1.2 β-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc. Natl. Acad. Sci. USA 107, 4996–5000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rohrer, D.K. et al. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl. Acad. Sci. USA 93, 7375–7380 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rohrer, D.K., Chruscinski, A., Schauble, E.H., Bernstein, D. & Kobilka, B.K. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J. Biol. Chem. 274, 16701–16708 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Vidal, M., Wieland, T., Lohse, M.J. & Lorenz, K. β-adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Cardiovasc. Res. 96, 255–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Lorenz, K., Stathopoulou, K., Schmid, E., Eder, P. & Cuello, F. Heart failure–specific changes in protein kinase signalling. Pflugers Arch. 466, 1151–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Liggett, S.B. et al. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Invest. 102, 1534–1539 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siedlecka, U. et al. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 295, H1917–H1926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paur, H. et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126, 697–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shao, Y. et al. Novel rat model reveals important roles of β-adrenoreceptors in stress-induced cardiomyopathy. Int. J. Cardiol. 168, 1943–1950 (2013).

    Article  PubMed  Google Scholar 

  61. Grueter, C.E., Abiria, S.A., Wu, Y., Anderson, M.E. & Colbran, R.J. Differential regulated interactions of calcium/calmodulin-dependent protein kinase ii with isoforms of voltage-gated calcium channel β subunits. Biochemistry 47, 1760–1767 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. El-Armouche, A., Pamminger, T., Ditz, D., Zolk, O. & Eschenhagen, T. Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc. Res. 61, 87–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Ruiz-Gómez, A. et al. Phosphorylation of phosducin and phosducin-like protein by G protein–coupled receptor kinase 2. J. Biol. Chem. 275, 29724–29730 (2000).

    Article  PubMed  Google Scholar 

  64. Nakayama, H. et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J. Clin. Invest. 117, 2431–2444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schultz, J.E., Hsu, A.K., Barbieri, J.T., Li, P.L. & Gross, G.J. Pertussis toxin abolishes the cardioprotective effect of ischemic preconditioning in intact rat heart. Am. J. Physiol. 275, H495–H500 (1998).

    CAS  PubMed  Google Scholar 

  66. Oostendorp, J. & Kaumann, A.J. Pertussis toxin suppresses carbachol-evoked cardiodepression but does not modify cardiostimulation mediated through β1- and putative β4-adrenoceptors in mouse left atria: no evidence for β2- and β3-adrenoceptor function. Naunyn Schmiedebergs Arch. Pharmacol. 361, 134–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Braz, J.C., Bueno, O.E., De Windt, L.J. & Molkentin, J.D. PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase 1/2 (ERK1/2). J. Cell Biol. 156, 905–919 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  69. Picht, E., Zima, A.V., Blatter, L.A. & Bers, D.M. SparkMaster: automated calcium spark analysis with ImageJ. Am. J. Physiol. Cell Physiol. 293, C1073–C1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Barry, P.H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods 51, 107–116 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG; Sonderforschungsbereich SFB688, TPA17 to K.L.) and by Bundesministerium für Bildung und Forschung (BMBF; Comprehensive Heart Failure Center Würzburg; project A2 to K.L., M.J.L. and F.W.). RKIP heterozygous knockout (Pebp1+/−) mice were kindly provided by the Mutant Mouse Regional Resource Center (MMRRC, a National Center for Research Resources and US National Institutes of Health–funded strain repository at the University of California, Davis; identification number 030379-UCD) and Adrb1−/− and Adrb2−/− mice by B. Kobilka (Department of Molecular and Cellular Physiology, Stanford University). We thank U. Zabel, A. Jungmann, R. Gilsbach, E. Schmitteckert, C. Hoffmann, S. Wagner and J. Bauer for valuable feedback and discussions and N. Yurdagül-Hemmrich, M. Babl, M. Fischer, T. Sowa, T. Schulte, L. Vlaskin, A.-K. Lamprecht and J. Becker for their excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

K.L., E.S., C.B., A.T., S.H., K.K., K.D., S.D., M.W., D.B., F.S., N.W. and S.E. performed experiments and analyzed data; S.N., E.W., J.P.S. and P.N. analyzed data; S.N., L.S.M., F.W., P.N., O.J.M., E.S., C.M., U.R., J.P.S., G.E., L.H. and H.A.K. provided feedback and revised the manuscript; K.L. and M.J.L. wrote the manuscript; K.L. designed the project.

Corresponding authors

Correspondence to Martin J Lohse or Kristina Lorenz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 1 (PDF 8507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, E., Neef, S., Berlin, C. et al. Cardiac RKIP induces a beneficial β-adrenoceptor–dependent positive inotropy. Nat Med 21, 1298–1306 (2015). https://doi.org/10.1038/nm.3972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing