Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Early life dynamics of the human gut virome and bacterial microbiome in infants

Abstract

The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator–low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study design and metagenomic analysis of the infant gut virome.
Figure 2: Analysis of virome beta diversity.
Figure 3: Alterations in the eukaryotic RNA and DNA viruses with age and evidence of shared viromes between co-twins.
Figure 4: Decrease in bacteriophage richness and diversity with age coincides with a shift in bacteriophage composition.
Figure 5: Bacterial community expansion with age.
Figure 6: Inverse relationships between bacteriophages and bacteria.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

References

  1. Virgin, H.W. The virome in mammalian physiology and disease. Cell 157, 142–150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Norman, J.M., Handley, S.A. & Virgin, H.W. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146, 1459–1469 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, I. & Blaser, M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borody, T.J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96 (2012).

    Article  CAS  Google Scholar 

  7. Gritz, E.C. & Bhandari, V. The human neonatal gut microbiome: a brief review. Front. Pediatr 3, 17 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Koenig, J.E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  9. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Dominguez-Bello, M.G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. La Rosa, P.S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. USA 111, 12522–12527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A. & Brown, P.O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodrich, J.K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Vlaminck, I. et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155, 1178–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Béland, K. et al. Torque Teno virus in children who underwent orthotopic liver transplantation: new insights about a common pathogen. J. Infect. Dis. 209, 247–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. McElvania TeKippe, E. et al. Increased prevalence of anellovirus in pediatric patients with fever. PLoS ONE 7, e50937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, L. et al. AIDS alters the commensal plasma virome. J. Virol. 87, 10912–10915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Handley, S.A. et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 151, 253–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barton, E.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA 110, 12450–12455 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Norman, J.M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parsons, R.J., Breitbart, M., Lomas, M.W. & Carlson, C.A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 6, 273–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hennes, K.P. & Simon, M. Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl. Environ. Microbiol. 61, 333–340 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cortez, M.H. & Weitz, J.S. Coevolution can reverse predator-prey cycles. Proc. Natl. Acad. Sci. USA 111, 7486–7491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 159, 367–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kapusinszky, B., Minor, P. & Delwart, E. Nearly constant shedding of diverse enteric viruses by two healthy infants. J. Clin. Microbiol. 50, 3427–3434 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Finkbeiner, S.R. et al. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog. 4, e1000011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holtz, L.R. et al. Geographic variation in the eukaryotic virome of human diarrhea. Virology 468–470, 556–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Kapoor, A. et al. A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc. Natl. Acad. Sci. USA 105, 20482–20487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gurnee, E.A. et al. Gut colonization of healthy children and their mothers with pathogenic ciprofloxacin-resistant Escherichia coli. J. Infect. Dis. doi:10.1093/infdis/jiv279 (2015).

  40. Edwards, R.A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Dutilh, B.E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ninomiya, M., Takahashi, M., Nishizawa, T., Shimosegawa, T. & Okamoto, H. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J. Clin. Microbiol. 46, 507–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Thingstad, T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).

    Article  Google Scholar 

  45. Kircher, M., Heyn, P. & Kelso, J. Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics 12, 382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Félix, M.A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aronesty, E. ea-utils: command-line tools for processing biological sequencing data http://code.google.com/p/ea-utils (2011).

  48. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, G. et al. Identification of novel viruses using VirusHunter—an automated data analysis pipeline. PLoS ONE 8, e78470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N. & Schuster, S.C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552–1560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oksanen, J.F et al. vegan: Community Ecology Package. R package version 2.0-10 https://cran.r-project.org/web/packages/vegan/index.html (2013).

  52. Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  56. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nix, W.A. et al. Detection of all known parechoviruses by real-time PCR. J. Clin. Microbiol. 46, 2519–2524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caporaso, J.G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Caporaso, J.G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4516–4522 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the infants' families and physicians for their participation in, and cooperation with, the study. This work was supported in part by the Children's Discovery Institute (MD-FR-2013-292) and the US National Institutes of Health (5P30 DK052574 (Biobank, Digestive Diseases Research Core Centers) to P.I.T. and UH3AI083265 to P.I.T. and B.B.W.). P.I.T. and B.B.W. received funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and from the Foundation for the National Institutes of Health (made possible by support from the Gerber Foundation). D.W. holds an Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund. E.S.L. is an Eli & Edythe Broad Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.S.L., L.R.H. and D.W. conceived and designed the experiments. L.D., I.K.B. and E.S.L. prepared samples for sequencing. E.S.L and I.K.B. performed PCR experiments. E.S.L., G.Z. and Y.Z. processed and analyzed the sequencing data. P.I.T., B.B.W. and I.M.N. recruited the study participants and managed the metadata. E.S.L., L.R.H., D.W. and P.I.T. wrote and edited the manuscript.

Corresponding authors

Correspondence to David Wang or Lori R Holtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3204 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, E., Zhou, Y., Zhao, G. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 21, 1228–1234 (2015). https://doi.org/10.1038/nm.3950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing