Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia

Abstract

Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet, moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reductions in PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in a 35% reduction of PU.1 expression, was sufficient to induce myeloid-biased preleukemic stem cells and their subsequent transformation to AML in a DNA mismatch repair–deficient background. AML progression was mediated by inhibition of expression of a PU.1-cooperating transcription factor, Irf8. Notably, we found marked molecular similarities between the disease in these mice and human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor, which commonly occurs in human disease, is sufficient to initiate cancer development, and it provides mechanistic insight into the formation and progression of preleukemic stem cells in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimal reduction of PU.1 expression is sufficient to trigger AML development in mice.
Figure 2: Characterization of UREhetMsh2−/−-induced AML.
Figure 3: Role of Irf8 downregulation in compound mutant AML cells.
Figure 4: Minimal PU.1 expression reduction induces a preleukemic state.
Figure 5: Similarities between mouse UREhetMsh2−/− and human myeloid leukemogenesis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Orkin, S.H. Diversification of hematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1, 57–64 (2000).

    CAS  PubMed  Google Scholar 

  2. Iwasaki, H. et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20, 3010–3021 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    CAS  PubMed  Google Scholar 

  6. Juliusson, G. et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113, 4179–4187 (2009).

    CAS  PubMed  Google Scholar 

  7. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149ra118 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Hope, K.J., Jin, L. & Dick, J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    CAS  PubMed  Google Scholar 

  9. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 36, 624–630 (2004).

    CAS  PubMed  Google Scholar 

  10. Kuo, Y.H. et al. Cbfβ-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9, 57–68 (2006).

    CAS  PubMed  Google Scholar 

  11. Krivtsov, A.V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    CAS  PubMed  Google Scholar 

  12. Shimizu, R. et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol. Cell. Biol. 24, 10814–10825 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Metcalf, D. et al. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc. Natl. Acad. Sci. USA 103, 1486–1491 (2006).

    CAS  PubMed  Google Scholar 

  14. Cook, W.D. et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA-binding domain. Blood 104, 3437–3444 (2004).

    CAS  PubMed  Google Scholar 

  15. Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nat. Genet. 38, 1269–1277 (2006).

    CAS  PubMed  Google Scholar 

  16. Steidl, U. et al. A distal single-nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J. Clin. Invest. 117, 2611–2620 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshida, H. et al. PML–retinoic acid receptor α inhibits PML IV enhancement of PU.1-induced C/EBPɛ expression in myeloid differentiation. Mol. Cell. Biol. 27, 5819–5834 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mueller, B.U. et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107, 3330–3338 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mizuki, M. et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101, 3164–3173 (2003).

    CAS  PubMed  Google Scholar 

  20. Vangala, R.K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003).

    CAS  PubMed  Google Scholar 

  21. Bonadies, N., Pabst, T. & Mueller, B.U. Heterozygous deletion of the PU.1 locus in human AML. Blood 115, 331–334 (2010).

    CAS  PubMed  Google Scholar 

  22. Mueller, B.U. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100, 998–1007 (2002).

    CAS  PubMed  Google Scholar 

  23. Mao, G. et al. Preferential loss of mismatch repair function in refractory and relapsed acute myeloid leukemia: potential contribution to AML progression. Cell Res. 18, 281–289 (2008).

    CAS  PubMed  Google Scholar 

  24. Zhu, Y.M., Das-Gupta, E.P. & Russell, N.H. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 94, 733–740 (1999).

    CAS  PubMed  Google Scholar 

  25. Diouf, B. et al. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat. Med. 17, 1298–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, S., Lloyd, R., Bowden, G., Glickman, B.W. & de Boer, J.G. Thymic lymphomas arising in Msh2-deficient mice display a large increase in mutation frequency and an altered mutational spectrum. Mutat. Res. 500, 67–74 (2002).

    CAS  PubMed  Google Scholar 

  27. Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smits, R. et al. Somatic Apc mutations are selected upon their capacity to inactivate the β-catenin downregulating activity. Genes Chromosom. Cancer 29, 229–239 (2000).

    CAS  PubMed  Google Scholar 

  29. Reitmair, A.H. et al. MSH2-deficient mice are viable and susceptible to lymphoid tumours. Nat. Genet. 11, 64–70 (1995).

    CAS  PubMed  Google Scholar 

  30. Schmidt, M., Bies, J., Tamura, T., Ozato, K. & Wolff, L. The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 upregulates expression of tumor suppressor p15Ink4b in murine myeloid cells. Blood 103, 4142–4149 (2004).

    CAS  PubMed  Google Scholar 

  31. Pourcet, B. et al. LXRα regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ. Res. 109, 492–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meraro, D., Gleit-Kielmanowicz, M., Hauser, H. & Levi, B.Z. IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte-lymphocyte–specific transcription factors, PU.1, IFN regulatory factor 8–IFN consensus sequence–binding protein and IFN regulatory factor 4: characterization of a new subtype of IFN-stimulated response element. J. Immunol. 168, 6224–6231 (2002).

    CAS  PubMed  Google Scholar 

  33. Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).

    CAS  PubMed  Google Scholar 

  34. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Appelbaum, F.R. et al. Age and acute myeloid leukemia. Blood 107, 3481–3485 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Staber, P.B. et al. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol. Cell 49, 934–946 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat. Immunol. 4, 1029–1036 (2003).

    CAS  PubMed  Google Scholar 

  38. Genik, P.C. et al. Leukemogenesis in heterozygous PU.1 knockout mice. Radiat. Res. 182, 310–315 (2014).

    PubMed  Google Scholar 

  39. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pang, W.W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  Google Scholar 

  41. Schmidt, M., Hochhaus, A., Nitsche, A., Hehlmann, R. & Neubauer, A. Expression of nuclear transcription factor interferon consensus sequence–binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-α. Blood 97, 3648–3650 (2001).

    CAS  PubMed  Google Scholar 

  42. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia–like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    CAS  PubMed  Google Scholar 

  43. Pham, T.H. et al. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, X. et al. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882–2891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holstege, H. et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res. 24, 733–742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci. USA 111, 2548–2553 (2014).

    CAS  PubMed  Google Scholar 

  48. Shlush, L.I. et al. Identification of preleukaemic hematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mercola, M., Wang, X.F., Olsen, J. & Calame, K. Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science 221, 663–665 (1983).

    CAS  PubMed  Google Scholar 

  50. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014).

    PubMed  Google Scholar 

  52. Will, B. et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat. Immunol. 14, 437–445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Montagna, C. et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63, 2179–2187 (2003).

    CAS  PubMed  Google Scholar 

  54. Tsujimura, H. et al. ICSBP–IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 101, 961–969 (2003).

    CAS  PubMed  Google Scholar 

  55. Huang, D., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Ozato for kindly providing the Irf8 expression vector. We thank A. Skoultchi, K. Gritsman and members of the Steidl laboratory for very helpful discussions and suggestions. We also thank G. Simkin and D. Sun of the Einstein Stem Cell Isolation and Xenotransplantation Facility (funded through New York Stem Cell Science (NYSTEM) grant no. C029154), C. Montagna and Z.X. Yang from the Einstein Genome Imaging Facility, D. Reynolds and W. Tran from the Einstein Genomics Core Facility and P. Schultes from the Einstein Department of Cell Biology for expert technical assistance. This work was supported by US National Institutes of Health (NIH) grant R00CA131503 (U.S.), Albert Einstein Cancer Center Core Support grant P30CA013330 and The Gabrielle's Angel Foundation for Cancer Research (U.S.). U.S. is a Research Scholar of the Leukemia and Lymphoma Society and the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research of the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

B.W., U.S., A.V. and W.E. designed the study and experiments. B.W., T.O.V., S.N., T.I.T., J.M., M.d.S.F., L.C., D.B.N., M.R., J.v.O. and S.S. conducted experiments. B.B., J.C., Y.Y., L.B. and B.W. performed gene expression, large data set and pathway analyses. C.M. and A.V. performed cell pathological analyses. B.W., T.O.V. and U.S. wrote the manuscript.

Corresponding authors

Correspondence to Britta Will or Ulrich Steidl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 & Supplementary Tables 1–8 (PDF 5655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Will, B., Vogler, T., Narayanagari, S. et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med 21, 1172–1181 (2015). https://doi.org/10.1038/nm.3936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3936

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer