Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

Abstract

Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The ten pAID case cohorts and top pAID-association loci identified.
Figure 2: Pleiotropic loci with heterogeneous effect directions across pAIDs.
Figure 3: Integrated annotation of pAID-association loci using existing predictive and experimental data sets.
Figure 4: Tissue-specific gene set enrichment analysis (TGSEA) of pediatric and adult autoimmune data sets identifies autoimmune-associated gene expression patterns across immune cells and tissues.
Figure 5: Genetic variants shared across the ten pAIDs reveal autoimmune disease networks.

References

  1. 1

    Cooper, G.S., Bynum, M.L. & Somers, E.C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33, 197–207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Cooper, J.D. et al. Seven newly identified loci for autoimmune thyroid disease. Hum. Mol. Genet. 21, 5202–5208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Tsoi, L.C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Liu, J.Z. et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 44, 1137–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Liu, J.Z. et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat. Genet. 45, 670–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    International Multiple Sclerosis Genetics Consortium. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

  11. 11

    Beecham, A.H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    National Human Genome Research Institute Published Genome-Wide Associations through 08/01/2014. NHGRI GWAS Catalog https://www.genome.gov/26525384 (2014).

  13. 13

    Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Cortes, A. & Brown, M.A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Hinks, A. et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 52, 1694–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Smyth, D.J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Harley, J.B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Ramos, P.S. et al. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. PLoS Genet. 7, e1002406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Cotsapas, C. & Hafler, D.A. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 34, 22–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Delaneau, O., Coulonges, C. & Zagury, J.-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9, 540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Marchini, J. SNPTEST (v2.5) https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html (2007).

  25. 25

    Zaykin, D.V. & Kozbur, D.O. P-value based analysis for shared controls design in genome-wide association studies. Genet. Epidemiol. 34, 725–738 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet. 90, 821–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Institute for Systems Biology and Juvenile Diabetes Research Foundation–Wellcome Trust Diabetes and Inflammation Laboratory. ImmunoBase http://www.immunobase.org (2013).

  28. 28

    Gensler, L.S. et al. Clinical, radiographic and functional differences between juvenile-onset and adult-onset ankylosing spondylitis: results from the PSOAS cohort. Ann. Rheum. Dis. 67, 233–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Lin, Y.-C., Liang, T.-H., Chen, W.-S. & Lin, H.-Y. Differences between juvenile-onset ankylosing spondylitis and adult-onset ankylosing spondylitis. J. Chin. Med. Assoc. 72, 573–580 (2009).

    Article  PubMed  Google Scholar 

  30. 30

    Anaya, J.-M., Gómez, L. & Castiblanco, J. Is there a common genetic basis for autoimmune diseases? Clin. Dev. Immunol. 13, 185–195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    De Jager, P.L. et al. Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn's disease and multiple sclerosis. Eur. J. Hum. Genet. 14, 317–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Zhernakova, A. et al. Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun. 6, 459–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Liu, J.Z. et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87, 139–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Li, M.-X., Gui, H.-S., Kwan, J.S.H. & Sham, P.C. GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am. J. Hum. Genet. 88, 283–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Huang, H., Chanda, P., Alonso, A., Bader, J.S. & Arking, D.E. Gene-based tests of association. PLoS Genet. 7, e1002177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Benita, Y. et al. Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 115, 5376–5384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Heng, T.S.P. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Olsson, R. et al. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology 100, 1319–1323 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Feld, J.J. & Heathcote, E.J. Epidemiology of autoimmune liver disease. J. Gastroenterol. Hepatol. 18, 1118–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Cappione, A. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–3216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Evenou, J.-P. et al. The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J. Pharmacol. Exp. Ther. 330, 792–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Jegasothy, B.V. Tacrolimus (FK 506)—a new therapeutic agent for severe recalcitrant psoriasis. Arch. Dermatol. 128, 781–785 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Nograles, K.E. & Krueger, J.G. Anti-cytokine therapies for psoriasis. Exp. Cell Res. 317, 1293–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Ergür, A.T. et al. Celiac disease and autoimmune thyroid disease in children with type 1 diabetes mellitus: clinical and HLA-genotyping results. J. Clin. Res. Pediatr. Endocrinol. 2, 151–154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Eyre, S. et al. Overlapping genetic susceptibility variants between three autoimmune disorders: rheumatoid arthritis, type 1 diabetes and coeliac disease. Arthritis Res. Ther. 12, R175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Joshita, S. et al. A2BP1 as a novel susceptible gene for primary biliary cirrhosis in Japanese patients. Hum. Immunol. 71, 520–524 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Pruitt, K., Brown, G., Tatusova, T. & Maglott, D. The Reference Sequence (RefSeq) database http://www.ncbi.nlm.nih.gov/books/NBK21091/ (2012).

  49. 49

    Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Jäger, D. et al. Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: definition of two HLA-A2 restricted peptide epitopes. Cancer Immun. 5, 11 (2005).

    PubMed  Google Scholar 

  51. 51

    Ludwig, M.-G. & Seuwen, K. Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J. Recept. Signal Transduct. Res. 22, 79–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Jiang, L.I., Sternweis, P.C. & Wang, J.E. Zymosan activates protein kinase A via adenylyl cyclase VII to modulate innate immune responses during inflammation. Mol. Immunol. 54, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Anderson, D.M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Miyashita, T. et al. Bidirectional regulation of human B cell responses by CD40–CD40 ligand interactions. J. Immunol. 158, 4620–4633 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Li, G. et al. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLoS Genet. 9, e1003487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Agarwal, P., Srivastava, R., Srivastava, A.K., Ali, S. & Datta, M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim. Biophys. Acta 1832, 1294–1303 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Huang, D.W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Ingenuity Systems. Ingenuity Pathway Analysis http://www.ingenuity.com/products/ipa (2015).

  60. 60

    Cerami, E.G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Denny, J.C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Ritchie, M.D. et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am. J. Hum. Genet. 86, 560–572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Liao, K.P. et al. Associations of autoantibodies, autoimmune risk alleles, and clinical diagnoses from the electronic medical records in rheumatoid arthritis cases and non-rheumatoid arthritis controls. Arthritis Rheum. 65, 571–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Imielinski, M. et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 41, 1335–1340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40, 1211–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Orange, J.S. et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J. Allergy Clin. Immunol. 127, 1360–1367.e6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Behrens, E.M. et al. Association of the TRAF1-C5 locus on chromosome 9 with juvenile idiopathic arthritis. Arthritis Rheum. 58, 2206–2207 (2008).

    Article  PubMed  Google Scholar 

  69. 69

    Grant, S.F. et al. Association of the BANK 1 R61H variant with systemic lupus erythematosus in Americans of European and African ancestry. Appl. Clin. Genet. 2, 1–5 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Liao, K.P. et al. Electronic medical records for discovery research in rheumatoid arthritis. Arthritis Care Res. (Hoboken) 62, 1120–1127 (2010).

    Article  Google Scholar 

  71. 71

    Petty, R.E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  72. 72

    Behrens, E.M. et al. Evaluation of the presentation of systemic onset juvenile rheumatoid arthritis: data from the Pennsylvania Systemic Onset Juvenile Arthritis Registry (PASOJAR). J. Rheumatol. 35, 343–348 (2008).

    PubMed  Google Scholar 

  73. 73

    Conley, M.E., Notarangelo, L.D. & Etzioni, A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin. Immunol. 93, 190–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Delaneau, O., Coulonges, C. & Zagury, J.-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9, 540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).

    Article  Google Scholar 

  78. 78

    Stucky, B.J. SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J. Biomol. Tech. 23, 90–93 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Zaykin, D.V. & Kozbur, D.O. P-value based analysis for shared controls design in genome-wide association studies. Genet. Epidemiol. 34, 725–738 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    De Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Institute for Systems Biology and Juvenile Diabetes Research Foundation–Wellcome Trust Diabetes and Inflammation Laboratory. ImmunoBase http://www.immunobase.org (2013).

  84. 84

    NHGRI. Published GWAS through 08/01/2014. NHGRI GWA Catalog http://www.genome.gov/multimedia/illustrations/GWAS_2011_3.pdf (2014).

  85. 85

    McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Rossin, E.J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Johnson, A.D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Chelala, C., Khan, A. & Lemoine, N.R. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics 25, 655–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662–D669 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    National Institutes of Health Genotype-Tissue Expression (GTEx) http://commonfund.nih.gov/GTEx/index (2015).

  93. 93

    Liang, L. et al. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res. 23, 716–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  Google Scholar 

  95. 95

    Adzhubei, I., Jordan, D.M. & Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit 7.20 (2013).

  96. 96

    Liu, C. et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13, 661 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Davydov, E.V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Nguyen, D.-Q. et al. Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res. 18, 1711–1723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Becker, K.G., Barnes, K.C., Bright, T.J. & Wang, S.A. The genetic association database. Nat. Genet. 36, 431–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Heng, T.S.P. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Mailman, M.D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39, 1181–1186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Benita, Y. et al. Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 115, 5376–5384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Kelder, T. et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 40, D1301–D1307 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Ingenuity Systems Ingenuity Pathway Analysis http://www.ingenuity.com/products/ipa (2015).

  110. 110

    Huang, D.W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Cerami, E.G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Liu, J.Z. et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87, 139–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  116. 116

    Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  Google Scholar 

  117. 117

    Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Ahn, R. et al. Association analysis of the extended MHC region in celiac disease implicates multiple independent susceptibility loci. PLoS ONE 7, e36926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Wellcome Trust Case Control Consortium. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  121. 121

    Barrett, J.C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Evans, D.M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Marchini, J. et al. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Gao, F. et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. bioRxiv 10.1101/009795.

  126. 126

    Chang, D. et al. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS One 9, e113684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Anderson, C.A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Harley, J.B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the subjects and their families for their participation in genotyping studies and the Biobank Repository at the Center for Applied Genomics at the Children's Hospital of Philadelphia. We acknowledge M.V. Holmes, H. Matsunami, L. Steel and E. Carrigan for their technical assistance and review of the manuscript. We are also thankful for the contributions of the Italian IBD Group, including S. Cucchiara (Roma), P. Lionetti (Firenze), G. Barabino (Genova), G.L. de Angelis (Parma), G. Guariso (Padova), C. Catassi (Ancona), G. Lombardi (Pescara), A.M. Staiano (Napoli), D. De Venuto (Bari), C. Romano (Messina), R. D'incà (Padova), M. Vecchi (Milano), A. Andriulli and F. Bossa (S. Giovanni Rotondo). The data sets used for the replication analyses were obtained through dbGaP accession numbers phs000344, phs000127, phs000274, phs000171, phs000224, phs000130, phs000019, phs000091, phs000206, phs000168, phs000138, phs000125 and phs000092. We thank the NIH data repository, the investigators who contributed the phenotype data and DNA samples from their original studies, and the primary funding organizations that supported these contributing investigators. This study made use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113. Y.R.L. is supported by the Paul and Daisy Soros Fellowship for New Americans and the NIH F30 Individual NRSA Training Grant. This study was supported by Institutional Development Funds from The Children's Hospital of Philadelphia and by DP3DK085708, RC1AR058606, U01HG006830, the Crohn's & Colitis Foundation of America, the Juvenile Diabetes Research Foundation, NIH grant CA127334 (to H.L. and S.D.Z.), the UK National Institutes of Healthcare Research (to H.C.) and a grant from the Lupus Research Institute (to E.T.L.P.). This work was supported in part by the NIH (grant R01-HG006849 to A.K.). F.G. is a Howard Hughes Medical Institute International Student Research fellow.

Author information

Affiliations

Authors

Contributions

Y.R.L. and H.H. were leading contributors in the design, analysis and writing of this study. D.J.A. contributed to data collection and literature review. B.F., Ø.F., L.A.D., S.D.T., M.L.B., S.L.G., A.L., E.P., E.R., C.S., A.S., E.M., M.S.S., B.A.L., M.P., R.K.R., D.C.W., H.C., C.C.-R., J.S.O., E.M.B., K.E.S., S.K., A.M.G., J. Snyder, T.H.F., C.P., R.N.B., J.E.M. and J.A.E. contributed samples and phenotypes. F.D.M., K.A.T., H.Q., R.M.C., C.E.K., F.W. and J. Satsangi provided assistance with samples, genotyping and data processing. S.D.Z., J.P.B., J.L. and H.L. contributed to, advised on and supervised statistical analysis. E.T.L.P., J.A.E. and B.J.K. assisted in composing and revising the manuscript. A.K., C.A.W., C.H., C.J.C., C.K., D.C., D.L., D.S.M., F.G., J.J.C., J.T.G., M.B., M.C.D., M.D.R., P.M.A.S., S.F.A.G., S.M.M., V.A., Y.G. and Z.W. read, edited and approved of the manuscript, along with all other authors.

Corresponding author

Correspondence to Hakon Hakonarson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–9 (PDF 39518 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Zhao, S. et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med 21, 1018–1027 (2015). https://doi.org/10.1038/nm.3933

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing