Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PCSK6-mediated corin activation is essential for normal blood pressure

Abstract

Hypertension is the most common cardiovascular disease, afflicting >30% of adults1. The cause of hypertension in most individuals remains unknown2,3, suggesting that additional contributing factors have yet to be discovered. Corin is a serine protease that activates the natriuretic peptides, thereby regulating blood pressure4. It is synthesized as a zymogen that is activated by proteolytic cleavage. CORIN variants and mutations impairing corin activation have been identified in people with hypertension and pre-eclampsia5,6,7,8,9. To date, however, the identity of the protease that activates corin remains elusive. Here we show that proprotein convertase subtilisin/kexin-6 (PCSK6, also named PACE4; ref. 10) cleaves and activates corin. In cultured cells, we found that corin activation was inhibited by inhibitors of PCSK family proteases and by small interfering RNAs blocking PCSK6 expression. Conversely, PCSK6 overexpression enhanced corin activation. In addition, purified PCSK6 cleaved wild-type corin but not the R801A variant that lacks the conserved activation site. Pcsk6-knockout mice developed salt-sensitive hypertension, and corin activation and pro-atrial natriuretic peptide processing activity were undetectable in these mice. Moreover, we found that CORIN variants in individuals with hypertension and pre-eclampsia were defective in PCSK6-mediated activation. We also identified a PCSK6 mutation that impaired corin activation activity in a hypertensive patient. Our results indicate that PCSK6 is the long-sought corin activator and is important for sodium homeostasis and normal blood pressure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Corin activation cleavage.
Figure 2: Cellular mechanism of PCSK6-mediated corin activation.
Figure 3: Analyses in Pcsk6-KO mice.
Figure 4: PCSK6-mediated activation of human corin variants and analysis of the D282N PCSK6 variant.

References

  1. Go, A.S. et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    PubMed  Google Scholar 

  2. Lifton, R.P., Gharavi, A.G. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    CAS  PubMed  Google Scholar 

  3. Oparil, S., Zaman, M.A. & Calhoun, D.A. Pathogenesis of hypertension. Ann. Intern. Med. 139, 761–776 (2003).

    CAS  PubMed  Google Scholar 

  4. Yan, W., Wu, F., Morser, J. & Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl. Acad. Sci. USA 97, 8525–8529 (2000).

    CAS  PubMed  Google Scholar 

  5. Cui, Y. et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 484, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong, N. et al. Corin mutation R539C from hypertensive patients impairs zymogen activation and generates an inactive alternative ectodomain fragment. J. Biol. Chem. 288, 7867–7874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dries, D.L. et al. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation 112, 2403–2410 (2005).

    CAS  PubMed  Google Scholar 

  8. Rame, J.E. et al. Corin I555(P568) allele is associated with enhanced cardiac hypertrophic response to increased systemic afterload. Hypertension 49, 857–864 (2007).

    CAS  PubMed  Google Scholar 

  9. Wang, W. et al. Corin variant associated with hypertension and cardiac hypertrophy exhibits impaired zymogen activation and natriuretic peptide processing activity. Circ. Res. 103, 502–508 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seidah, N.G., Sadr, M.S., Chretien, M. & Mbikay, M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J. Biol. Chem. 288, 21473–21481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guyton, A.C. Blood pressure control–special role of the kidneys and body fluids. Science 252, 1813–1816 (1991).

    CAS  PubMed  Google Scholar 

  12. Mullins, L.J., Bailey, M.A. & Mullins, J.J. Hypertension, kidney, and transgenics: a fresh perspective. Physiol. Rev. 86, 709–746 (2006).

    CAS  PubMed  Google Scholar 

  13. Cowley, A.W. Jr. The genetic dissection of essential hypertension. Nat. Rev. Genet. 7, 829–840 (2006).

    CAS  PubMed  Google Scholar 

  14. McGrath, M.F., de Bold, M.L. & de Bold, A.J. The endocrine function of the heart. Trends Endocrinol. Metab. 16, 469–477 (2005).

    CAS  PubMed  Google Scholar 

  15. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbato, E. et al. Influence of rs5065 atrial natriuretic peptide gene variant on coronary artery disease. J. Am. Coll. Cardiol. 59, 1763–1770 (2012).

    CAS  PubMed  Google Scholar 

  17. Cannone, V. et al. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension 62, 860–865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodgson-Zingman, D.M. et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N. Engl. J. Med. 359, 158–165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lynch, A.I., Claas, S.A. & Arnett, D.K. A review of the role of atrial natriuretic peptide gene polymorphisms in hypertension and its sequelae. Curr. Hypertens. Rep. 11, 35–42 (2009).

    CAS  PubMed  Google Scholar 

  20. Yan, W., Sheng, N., Seto, M., Morser, J. & Wu, Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J. Biol. Chem. 274, 14926–14935 (1999).

    CAS  PubMed  Google Scholar 

  21. Jiang, J. et al. Ectodomain shedding and autocleavage of the cardiac membrane protease corin. J. Biol. Chem. 286, 10066–10072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rockwell, N.C., Krysan, D.J., Komiyama, T. & Fuller, R.S. Precursor processing by kex2/furin proteases. Chem. Rev. 102, 4525–4548 (2002).

    CAS  PubMed  Google Scholar 

  23. Beaubien, G. et al. The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates. Cell Tissue Res. 279, 539–549 (1995).

    CAS  PubMed  Google Scholar 

  24. Wang, W. et al. Impaired sodium excretion and salt-sensitive hypertension in corin-deficient mice. Kidney Int. 82, 26–33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Constam, D.B. & Robertson, E.J. SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev. 14, 1146–1155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, W. et al. Salt-sensitive hypertension and cardiac hypertrophy in transgenic mice expressing a corin variant identified in blacks. Hypertension 60, 1352–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong, N. et al. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. J. Biol. Chem. 289, 17909–17916 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Taneda, H., Andoh, K., Nishioka, J., Takeya, H. & Suzuki, K. Blood coagulation factor Xa interacts with a linear sequence of the kringle 2 domain of prothrombin. J. Biochem. 116, 589–597 (1994).

    CAS  PubMed  Google Scholar 

  29. Guipponi, M. et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum. Mol. Genet. 11, 2829–2836 (2002).

    CAS  PubMed  Google Scholar 

  30. Chan, J.C. et al. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc. Natl. Acad. Sci. USA 102, 785–790 (2005).

    CAS  PubMed  Google Scholar 

  31. Chen, H.H. Heart failure: a state of brain natriuretic peptide deficiency or resistance or both!. J. Am. Coll. Cardiol. 49, 1089–1091 (2007).

    PubMed  Google Scholar 

  32. Chen, S. et al. Protease corin expression and activity in failing hearts. Am. J. Physiol. Heart Circ. Physiol. 299, H1687–H1692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dries, D.L. Process matters: Emerging concepts underlying impaired natriuretic peptide system function in heart failure. Circ Heart Fail 4, 107–110 (2011).

    PubMed  Google Scholar 

  34. Gladysheva, I.P. et al. Corin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy. Hypertension 61, 327–332 (2013).

    CAS  PubMed  Google Scholar 

  35. Li, J.P. et al. The association between paired basic amino acid cleaving enzyme 4 gene haplotype and diastolic blood pressure. Chin. Med. J. (Engl.) 117, 382–388 (2004).

    CAS  Google Scholar 

  36. Cohen, J.C. & Hobbs, H.H. Genetics. Simple genetics for a complex disease. Science 340, 689–690 (2013).

    CAS  PubMed  Google Scholar 

  37. Horton, J.D., Cohen, J.C. & Hobbs, H.H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50 (suppl.), S172–S177 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Seidah, N.G., Awan, Z., Chretien, M. & Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ. Res. 114, 1022–1036 (2014).

    CAS  PubMed  Google Scholar 

  39. Davidson, M.H. Dyslipidaemia: PCSK9 antibodies: a dividend of the genomics revolution. Nat. Rev. Cardiol. 10, 618–619 (2013).

    CAS  PubMed  Google Scholar 

  40. Seidah, N.G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).

    CAS  PubMed  Google Scholar 

  41. Liao, X., Wang, W., Chen, S. & Wu, Q. Role of glycosylation in corin zymogen activation. J. Biol. Chem. 282, 27728–27735 (2007).

    CAS  PubMed  Google Scholar 

  42. Knappe, S., Wu, F., Masikat, M.R., Morser, J. & Wu, Q. Functional analysis of the transmembrane domain and activation cleavage of human corin: design and characterization of a soluble corin. J. Biol. Chem. 278, 52363–52370 (2003).

    CAS  PubMed  Google Scholar 

  43. Wu, F., Yan, W., Pan, J., Morser, J. & Wu, Q. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J. Biol. Chem. 277, 16900–16905 (2002).

    CAS  PubMed  Google Scholar 

  44. Qi, X., Jiang, J., Zhu, M. & Wu, Q. Human corin isoforms with different cytoplasmic tails that alter cell surface targeting. J. Biol. Chem. 286, 20963–20969 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dinter, A. & Berger, E.G. Golgi-disturbing agents. Histochem. Cell Biol. 109, 571–590 (1998).

    CAS  PubMed  Google Scholar 

  46. Malfait, A.M. et al. A role for PACE4 in osteoarthritis pain: evidence from human genetic association and null mutant phenotype. Ann. Rheum. Dis. 71, 1042–1048 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang, J., Pristera, N., Wang, W., Zhang, X. & Wu, Q. Effect of sialylated O-glycans in pro-brain natriuretic peptide stability. Clin. Chem. 56, 959–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vasudevan, N.T. et al. Gβγ-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor α-induced cardiac β-adrenergic receptor dysfunction. Circulation 128, 377–387 (2013).

    CAS  PubMed  Google Scholar 

  49. Dong, N. et al. Plasma-soluble corin in patients with heart failure. Circ Heart Fail 3, 207–211 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Yin of the Lerner Imaging Core at the Cleveland Clinic for electron microscopic analysis and W. Claycomb of Louisiana State University Medical Center for HL-1 cells. This work was supported in part by grants from the US National Institutes of Health (R01HL089298, R01HD064634, R01HL126697) (Q.W.), a Rush University Pilot Grant (A.-M.M.), the National Natural Science Foundation of China (81170247, 81370718) (N.D.), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

S.C., P.C., N.D. and Q.W. designed the study. S.C., P.C., J.P., C.Z. and H.W. performed molecular biology, biochemistry, cell biology and mouse model studies. N.D., T.Z., J.Y. and Y. Zhang studied hypertensive patients, collected blood samples, sequenced PCSK6 exons, and made plasmids expressing corin variants. E.E.M. and S.V.N.P. did echocardiographic analysis in mice. R.E.M. and A.-M.M. provided Pcsk6-KO mice. S.C., Y. Zhou and Q.W. wrote the manuscript. All authors critically read and commented on the manuscript.

Corresponding author

Correspondence to Qingyu Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 & Supplementary Table 1 (PDF 1325 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Cao, P., Dong, N. et al. PCSK6-mediated corin activation is essential for normal blood pressure. Nat Med 21, 1048–1053 (2015). https://doi.org/10.1038/nm.3920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3920

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing